Wang Y, Zhang Y, Qiao Z, Wang W
Micromachines (Basel). 2024; 15(3).
PMID: 38542538
PMC: 10972523.
DOI: 10.3390/mi15030291.
Awate D, Holton S, Meyer K, Juarez J
Micromachines (Basel). 2023; 14(7).
PMID: 37512699
PMC: 10383660.
DOI: 10.3390/mi14071388.
Yaghmur A, Hamad I
Molecules. 2022; 27(14).
PMID: 35889473
PMC: 9323596.
DOI: 10.3390/molecules27144602.
Schroen K, Berton-Carabin C, Renard D, Marquis M, Boire A, Cochereau R
Micromachines (Basel). 2021; 12(8).
PMID: 34442486
PMC: 8400250.
DOI: 10.3390/mi12080863.
Woo S, Jo Y, Yoo Y, Kim S
Micromachines (Basel). 2021; 12(2).
PMID: 33572238
PMC: 7915932.
DOI: 10.3390/mi12020170.
High-throughput smFRET analysis of freely diffusing nucleic acid molecules and associated proteins.
Segal M, Ingargiola A, Lerner E, Chung S, White J, Streets A
Methods. 2019; 169:21-45.
PMID: 31356875
PMC: 7735737.
DOI: 10.1016/j.ymeth.2019.07.021.
Energy Transfer as A Driving Force in Nucleic Acid⁻Protein Interactions.
Zavyalova E, Kopylov A
Molecules. 2019; 24(7).
PMID: 30979095
PMC: 6480146.
DOI: 10.3390/molecules24071443.
Microfluidic Hydrodynamic Focusing for Synthesis of Nanomaterials.
Lu M, Ozcelik A, Grigsby C, Zhao Y, Guo F, Leong K
Nano Today. 2018; 11(6):778-792.
PMID: 30337950
PMC: 6191180.
DOI: 10.1016/j.nantod.2016.10.006.
Computer design of microfluidic mixers for protein/RNA folding studies.
Inguva V, Kathuria S, Bilsel O, Perot B
PLoS One. 2018; 13(6):e0198534.
PMID: 29924842
PMC: 6010218.
DOI: 10.1371/journal.pone.0198534.
Protein folding transition path times from single molecule FRET.
Chung H, Eaton W
Curr Opin Struct Biol. 2017; 48:30-39.
PMID: 29080467
PMC: 5826754.
DOI: 10.1016/j.sbi.2017.10.007.
Protein unfolding mechanisms and their effects on folding experiments.
Lapidus L
F1000Res. 2017; 6:1723.
PMID: 29034084
PMC: 5615768.
DOI: 10.12688/f1000research.12070.1.
When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches.
Munoz V, Cerminara M
Biochem J. 2016; 473(17):2545-59.
PMID: 27574021
PMC: 5003694.
DOI: 10.1042/BCJ20160107.
Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis.
Kise D, Reddish M, Dyer R
J Micromech Microeng. 2016; 25(12).
PMID: 26855478
PMC: 4737954.
DOI: 10.1088/0960-1317/25/12/124002.
Complex pathways in folding of protein G explored by simulation and experiment.
Lapidus L, Acharya S, Schwantes C, Wu L, Shukla D, King M
Biophys J. 2014; 107(4):947-55.
PMID: 25140430
PMC: 4147789.
DOI: 10.1016/j.bpj.2014.06.037.
Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.
Yamaguchi H, Miyazaki M
Biomolecules. 2014; 4(1):235-51.
PMID: 24970214
PMC: 4030991.
DOI: 10.3390/biom4010235.
Advances in turbulent mixing techniques to study microsecond protein folding reactions.
Kathuria S, Chan A, Graceffa R, Nobrega R, Matthews C, Irving T
Biopolymers. 2013; 99(11):888-96.
PMID: 23868289
PMC: 3843316.
DOI: 10.1002/bip.22355.
Single-molecule measurements of transient biomolecular complexes through microfluidic dilution.
Horrocks M, Rajah L, Jonsson P, Kjaergaard M, Vendruscolo M, Knowles T
Anal Chem. 2013; 85(14):6855-9.
PMID: 23782428
PMC: 3748451.
DOI: 10.1021/ac4010875.
A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics.
Burke K, Parul D, Reddish M, Dyer R
Lab Chip. 2013; 13(15):2912-21.
PMID: 23760106
PMC: 3733270.
DOI: 10.1039/c3lc50497b.
Slow unfolded-state structuring in Acyl-CoA binding protein folding revealed by simulation and experiment.
Voelz V, Jager M, Yao S, Chen Y, Zhu L, Waldauer S
J Am Chem Soc. 2012; 134(30):12565-77.
PMID: 22747188
PMC: 3462454.
DOI: 10.1021/ja302528z.
Visualizing millisecond chaotic mixing dynamics in microdroplets: A direct comparison of experiment and simulation.
Jiang L, Zeng Y, Zhou H, Qu J, Yao S
Biomicrofluidics. 2012; 6(1):12810-1281012.
PMID: 22662077
PMC: 3365329.
DOI: 10.1063/1.3673254.