Aupic J, Lapenta F, Strmsek Z, Merljak E, Plaper T, Jerala R
Sci Adv. 2022; 8(24):eabm8243.
PMID: 35714197
PMC: 9205593.
DOI: 10.1126/sciadv.abm8243.
Dang D
Front Chem. 2022; 10:829312.
PMID: 35211456
PMC: 8861298.
DOI: 10.3389/fchem.2022.829312.
Malayam Parambath S, Williams A, Hunt L, Selvan D, Hammer N, Chakraborty S
ChemSusChem. 2021; 14(10):2237-2246.
PMID: 33787007
PMC: 8569915.
DOI: 10.1002/cssc.202100122.
Boyle A, Rabe M, Crone N, Rhys G, Soler N, Voskamp P
Chem Sci. 2019; 10(31):7456-7465.
PMID: 31489168
PMC: 6713864.
DOI: 10.1039/c9sc01165j.
Zhang J, Zhu Q, Yu H, Li L, Zhang G, Chen X
Int J Mol Sci. 2019; 20(1).
PMID: 30609672
PMC: 6337223.
DOI: 10.3390/ijms20010133.
Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure.
Chino M, Maglio O, Nastri F, Pavone V, DeGrado W, Lombardi A
Eur J Inorg Chem. 2016; 2015(21):3371-3390.
PMID: 27630532
PMC: 5019575.
DOI: 10.1002/ejic.201500470.
Protein design: toward functional metalloenzymes.
Yu F, Cangelosi V, Zastrow M, Tegoni M, Plegaria J, Tebo A
Chem Rev. 2014; 114(7):3495-578.
PMID: 24661096
PMC: 4300145.
DOI: 10.1021/cr400458x.
Functional, metal-based crosslinkers for α-helix induction in short peptides.
Smith S, Du K, Radford R, Tezcan F
Chem Sci. 2013; 4(9):3740-3747.
PMID: 24156013
PMC: 3800689.
DOI: 10.1039/C3SC50858G.
Designing functional metalloproteins: from structural to catalytic metal sites.
Zastrow M, Pecoraro V
Coord Chem Rev. 2013; 257(17-18):2565-2588.
PMID: 23997273
PMC: 3756834.
DOI: 10.1016/j.ccr.2013.02.007.
Controlling self-assembly of a peptide-based material via metal-ion induced registry shift.
Anzini P, Xu C, Hughes S, Magnotti E, Jiang T, Hemmingsen L
J Am Chem Soc. 2013; 135(28):10278-81.
PMID: 23815081
PMC: 3786573.
DOI: 10.1021/ja404677c.
Controlling and fine tuning the physical properties of two identical metal coordination sites in de novo designed three stranded coiled coil peptides.
Iranzo O, Chakraborty S, Hemmingsen L, Pecoraro V
J Am Chem Soc. 2010; 133(2):239-51.
PMID: 21162521
PMC: 3149768.
DOI: 10.1021/ja104433n.
Ca 2+-induced self-assembly in designed peptides with optimally spaced gamma-carboxyglutamic acid residues.
Dai Q, Dong M, Liu Z, Prorok M, Castellino F
J Inorg Biochem. 2010; 105(1):52-7.
PMID: 21134602
PMC: 3662978.
DOI: 10.1016/j.jinorgbio.2010.10.002.
Nanometer to millimeter scale peptide-porphyrin materials.
Zaytsev D, Xie F, Mukherjee M, Bludin A, Demeler B, Breece R
Biomacromolecules. 2010; 11(10):2602-9.
PMID: 20804210
PMC: 2952671.
DOI: 10.1021/bm100540t.
Design of functional metalloproteins.
Lu Y, Yeung N, Sieracki N, Marshall N
Nature. 2009; 460(7257):855-62.
PMID: 19675646
PMC: 2770889.
DOI: 10.1038/nature08304.
Characterization of the cofactor-induced folding mechanism of a zinc-binding peptide using computationally designed mutants.
Tang J, Kang S, Saven J, Gai F
J Mol Biol. 2009; 389(1):90-102.
PMID: 19361525
PMC: 2792901.
DOI: 10.1016/j.jmb.2009.03.074.
Harnessing natures ability to control metal ion coordination geometry using de novo designed peptides.
Peacock A, Iranzo O, Pecoraro V
Dalton Trans. 2009; (13):2271-80.
PMID: 19290357
PMC: 3046812.
DOI: 10.1039/b818306f.
Design of thiolate rich metal binding sites within a peptidic framework.
Luczkowski M, Stachura M, Schirf V, Demeler B, Hemmingsen L, Pecoraro V
Inorg Chem. 2008; 47(23):10875-88.
PMID: 18959366
PMC: 2650386.
DOI: 10.1021/ic8009817.
Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress- and salt stress-regulated plant-specific protein, from unfolded to folded state.
Goldgur Y, Rom S, Ghirlando R, Shkolnik D, Shadrin N, Konrad Z
Plant Physiol. 2006; 143(2):617-28.
PMID: 17189335
PMC: 1803749.
DOI: 10.1104/pp.106.092965.
Incorporating electron-transfer functionality into synthetic metalloproteins from the bottom-up.
Hong J, Kharenko O, Ogawa M
Inorg Chem. 2006; 45(25):9974-84.
PMID: 17140193
PMC: 2566827.
DOI: 10.1021/ic060222j.