» Articles » PMID: 15496415

Molecular Isolation and Characterization of a Soluble Isoform of Activated Leukocyte Cell Adhesion Molecule That Modulates Endothelial Cell Function

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2004 Oct 22
PMID 15496415
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Cell adhesion molecules regulate a variety of endothelial cell functions such as migration, response to inflammation, and angiogenesis. Recently, activated leukocyte cell adhesion molecule (ALCAM), a member of the Ig superfamily, has been detected in the primitive subsets of hematopoietic cells and endothelial cells during embryogenesis. ALCAM supports the development of hematopoietic cells as well as enhancing capillary tube formation in vitro. Here, we isolated a novel soluble isoform of ALCAM (sALCAM) that is produced via alternative splicing. sALCAM contains the single amino-terminal Ig-like domain of ALCAM and lacks a transmembrane domain. When expressed in cultured cells, sALCAM was properly secreted into the media. Both ALCAM and sALCAM are expressed in a variety of cultured human endothelial cells. Notably, their transcripts were differentially regulated in human microvascular endothelial cells (HMVEC) upon tumor necrosis factor-alpha stimulation. ALCAM significantly enhanced tube formation of endothelial-like yolk sac cells on Matrigel, whereas it inhibited their migration in vitro. sALCAM completely abolished these effects of ALCAM. Furthermore, sALCAM enhanced migration of mock-transfected endothelial-like yolk sac cells that do not express ALCAM, indicating that sALCAM has an independent effect on cell migration in addition to modulating ALCAM function. In addition, sALCAM significantly enhanced migration of HMVEC, whereas it inhibited tube formation of HMVEC on Matrigel. sALCAM demonstrated an ability to bind ALCAM and partially inhibited ALCAM-ALCAM homophilic interactions. Taken together, these data characterize a novel soluble isoform of ALCAM that may have ALCAM-dependent and ALCAM-independent functions, providing further insights regarding the role of this adhesion molecule in the regulation of endothelial cell function.

Citing Articles

Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review).

Yu T, Jiang W, Wang Y, Zhou Y, Jiao J, Wu M Int J Oncol. 2024; 64(4).

PMID: 38390935 PMC: 10919759. DOI: 10.3892/ijo.2024.5628.


Exosomal MicroRNA and Protein Profiles of Hepatitis B Virus-Related Hepatocellular Carcinoma Cells.

Todorova V, Byrum S, Mackintosh S, Jamshidi-Parsian A, Gies A, Washam C Int J Mol Sci. 2023; 24(17).

PMID: 37685904 PMC: 10487651. DOI: 10.3390/ijms241713098.


Optimization and Characterization of Novel ALCAM-Targeting Antibody Fragments for Transepithelial Delivery.

Bauer A, Klassa S, Herbst A, Maccioni C, Abhamon W, Segueni N Pharmaceutics. 2023; 15(7).

PMID: 37514028 PMC: 10385607. DOI: 10.3390/pharmaceutics15071841.


ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response.

Li R, Ren T, Zeng J, Xu H Inflammation. 2022; 46(2):688-699.

PMID: 36418761 DOI: 10.1007/s10753-022-01765-3.


Interoperability of RTN1A in dendrite dynamics and immune functions in human Langerhans cells.

Cichon M, Pfisterer K, Leitner J, Wagner L, Staud C, Steinberger P Elife. 2022; 11.

PMID: 36223176 PMC: 9555864. DOI: 10.7554/eLife.80578.