» Articles » PMID: 15388641

Human Apolipoprotein A-II Enrichment Displaces Paraoxonase from HDL and Impairs Its Antioxidant Properties: a New Mechanism Linking HDL Protein Composition and Antiatherogenic Potential

Overview
Journal Circ Res
Date 2004 Sep 25
PMID 15388641
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Apolipoprotein A-II (apoA-II), the second major high-density lipoprotein (HDL) apolipoprotein, has been linked to familial combined hyperlipidemia. Human apoA-II transgenic mice constitute an animal model for this proatherogenic disease. We studied the ability of human apoA-II transgenic mice HDL to protect against oxidative modification of apoB-containing lipoproteins. When challenged with an atherogenic diet, antigens related to low-density lipoprotein (LDL) oxidation were markedly increased in the aorta of 11.1 transgenic mice (high human apoA-II expressor). HDL from control mice and 11.1 transgenic mice were coincubated with autologous very LDL (VLDL) or LDL, or with human LDL under oxidative conditions. The degree of oxidative modification of apoB lipoproteins was then evaluated by measuring relative electrophoretic mobility, dichlorofluorescein fluorescence, 9- and 13-hydroxyoctadecadienoic acid content, and conjugated diene kinetics. In all these different approaches, and in contrast to control mice, HDL from 11.1 transgenic mice failed to protect LDL from oxidative modification. A decreased content of apoA-I, paraoxonase (PON1), and platelet-activated factor acetyl-hydrolase activities was found in HDL of 11.1 transgenic mice. Liver gene expression of these HDL-associated proteins did not differ from that of control mice. In contrast, incubation of isolated human apoA-II with control mouse plasma at 37 degrees C decreased PON1 activity and displaced the enzyme from HDL. Thus, overexpression of human apoA-II in mice impairs the ability of HDL to protect apoB-containing lipoproteins from oxidation. Further, the displacement of PON1 by apoA-II could explain in part why PON1 is mostly found in HDL particles with apoA-I and without apoA-II, as well as the poor antiatherogenic properties of apoA-II-rich HDL.

Citing Articles

High-density lipoprotein cholesterol: how studying the 'good cholesterol' could improve cardiovascular health.

Diaz L, Bielczyk-Maczynska E Open Biol. 2025; 15(2):240372.

PMID: 39965658 PMC: 11835495. DOI: 10.1098/rsob.240372.


Small hepatitis B virus surface antigen (SHBs) induces dyslipidemia by suppressing apolipoprotein-AII expression through ER stress-mediated modulation of HNF4α and C/EBPγ.

Wu Y, Ren L, Mao C, Shen Z, Zhu W, Su Z J Virol. 2024; 98(11):e0123924.

PMID: 39470210 PMC: 11575332. DOI: 10.1128/jvi.01239-24.


Hydroxytyrosol, a Promising Supplement in the Management of Human Stroke: An Exploratory Study.

Naranjo A, Alvarez-Soria M, Aranda-Villalobos P, Martinez-Rodriguez A, Martinez-Lara E, Siles E Int J Mol Sci. 2024; 25(9).

PMID: 38732018 PMC: 11084205. DOI: 10.3390/ijms25094799.


Synergistic Anti-Inflammatory Activity of Apolipoprotein A-I and CIGB-258 in Reconstituted High-Density Lipoproteins (rHDL) against Acute Toxicity of Carboxymethyllysine in Zebrafish and Its Embryo.

Cho K, Kim J, Kang D, Dominguez-Horta M, Martinez-Donato G Pharmaceuticals (Basel). 2024; 17(2).

PMID: 38399381 PMC: 10892825. DOI: 10.3390/ph17020165.


Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes.

Denimal D Antioxidants (Basel). 2024; 13(1).

PMID: 38247481 PMC: 10812436. DOI: 10.3390/antiox13010057.