» Articles » PMID: 15339811

Analysis of Side-chain Rotamers in Transmembrane Proteins

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2004 Sep 2
PMID 15339811
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

We measured the frequency of side-chain rotamers in 14 alpha-helical and 16 beta-barrel membrane protein structures and found that the membrane environment considerably perturbs the rotamer frequencies compared to soluble proteins. Although there are limited experimental data, we found statistically significant changes in rotamer preferences depending on the residue environment. Rotamer distributions were influenced by whether the residues were lipid or protein facing, and whether the residues were found near the N- or C-terminus. Hydrogen-bonding interactions with the helical backbone perturbs the rotamer populations of Ser and His. Trp and Tyr favor side-chain conformations that allow their side chains to extend their polar atoms out of the membrane core, thereby aligning the side-chain polarity gradient with the polarity gradient of the membrane. Our results demonstrate how the membrane environment influences protein structures, providing information that will be useful in the structure prediction and design of transmembrane proteins.

Citing Articles

How physical forces drive the process of helical membrane protein folding.

Corin K, Bowie J EMBO Rep. 2022; 23(3):e53025.

PMID: 35133709 PMC: 8892262. DOI: 10.15252/embr.202153025.


Insight Into Pathological Integrin αIIbβ3 Activation From Safeguarding The Inactive State.

Situ A, Kim J, An W, Kim C, Ulmer T J Mol Biol. 2021; 433(7):166832.

PMID: 33539882 PMC: 11025565. DOI: 10.1016/j.jmb.2021.166832.


Mapping the functional anatomy of Orai1 transmembrane domains for CRAC channel gating.

Yeung P, Yamashita M, Ing C, Pomes R, Freymann D, Prakriya M Proc Natl Acad Sci U S A. 2018; 115(22):E5193-E5202.

PMID: 29760086 PMC: 5984495. DOI: 10.1073/pnas.1718373115.


Membrane Anchoring of α-Helical Proteins: Role of Tryptophan.

Situ A, Kang S, Frey B, An W, Kim C, Ulmer T J Phys Chem B. 2018; 122(3):1185-1194.

PMID: 29323921 PMC: 11025564. DOI: 10.1021/acs.jpcb.7b11227.


Methods for the Development of In Silico GPCR Models.

Morales P, Hurst D, Reggio P Methods Enzymol. 2017; 593:405-448.

PMID: 28750813 PMC: 5809125. DOI: 10.1016/bs.mie.2017.05.005.


References
1.
Lovell S, Word J, Richardson J, Richardson D . The penultimate rotamer library. Proteins. 2000; 40(3):389-408. View

2.
Segrest J, Jones M, De Loof H, Brouillette C, Venkatachalapathi Y, Anantharamaiah G . The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 1992; 33(2):141-66. View

3.
Senes A, Ubarretxena-Belandia I, Engelman D . The Calpha ---H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci U S A. 2001; 98(16):9056-61. PMC: 55372. DOI: 10.1073/pnas.161280798. View

4.
Shrivastava I, Capener C, Forrest L, Sansom M . Structure and dynamics of K channel pore-lining helices: a comparative simulation study. Biophys J. 2000; 78(1):79-92. PMC: 1300619. DOI: 10.1016/S0006-3495(00)76574-X. View

5.
Seshadri K, Garemyr R, Wallin E, von Heijne G, Elofsson A . Architecture of beta-barrel membrane proteins: analysis of trimeric porins. Protein Sci. 1998; 7(9):2026-32. PMC: 2144157. DOI: 10.1002/pro.5560070919. View