» Articles » PMID: 15317869

Selectivity and Affinity of Triplex-forming Oligonucleotides Containing 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine for Recognizing AT Base Pairs in Duplex DNA

Overview
Specialty Biochemistry
Date 2004 Aug 20
PMID 15317869
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

We have used DNase I footprinting, fluorescence and ultraviolet (UV) melting experiments and circular dichroism to demonstrate that, in the parallel triplex binding motif, 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine (bis-amino-U, BAU) has very high affinity for AT relative to all other Watson-Crick base pairs in DNA. Complexes containing two or more substitutions with this nucleotide analogue are stable at pH 7.0, even though they contain several C.GC base triplets. These modified triplex-forming oligonucleotides retain exquisite sequence specificity, with enhanced discrimination against YR base pairs (especially CG). These properties make BAU a useful base analogue for the sequence-specific creation of stable triple helices at pH 7.0.

Citing Articles

Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides.

Balasubramaniyam T, Oh K, Jin H, Ahn H, Kim B, Lee J Int J Mol Sci. 2021; 22(17).

PMID: 34502459 PMC: 8430589. DOI: 10.3390/ijms22179552.


Unnatural bases for recognition of noncoding nucleic acid interfaces.

Miao S, Liang Y, Rundell S, Bhunia D, Devari S, Munyaradzi O Biopolymers. 2020; 112(1):e23399.

PMID: 32969496 PMC: 7855516. DOI: 10.1002/bip.23399.


Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA.

Moreno P, Geny S, Pabon Y, Bergquist H, Zaghloul E, Rocha C Nucleic Acids Res. 2013; 41(5):3257-73.

PMID: 23345620 PMC: 3597675. DOI: 10.1093/nar/gkt007.


Secondary binding sites for heavily modified triplex forming oligonucleotides.

Cardew A, Brown T, Fox K Nucleic Acids Res. 2011; 40(8):3753-62.

PMID: 22180535 PMC: 3333850. DOI: 10.1093/nar/gkr1119.


Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.

Mukherjee A, Vasquez K Biochimie. 2011; 93(8):1197-208.

PMID: 21501652 PMC: 3545518. DOI: 10.1016/j.biochi.2011.04.001.


References
1.
Gowers D, Fox K . Towards mixed sequence recognition by triple helix formation. Nucleic Acids Res. 1999; 27(7):1569-77. PMC: 148358. DOI: 10.1093/nar/27.7.1569. View

2.
Bijapur J, Keppler M, BERGQVIST S, Brown T, Fox K . 5-(1-propargylamino)-2'-deoxyuridine (UP): a novel thymidine analogue for generating DNA triplexes with increased stability. Nucleic Acids Res. 1999; 27(8):1802-9. PMC: 148387. DOI: 10.1093/nar/27.8.1802. View

3.
Langley G, Herniman J, Davies N, Brown T . Simplified sample preparation for the analysis of oligonucleotides by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1999; 13(17):1717-23. DOI: 10.1002/(SICI)1097-0231(19990915)13:17<1717::AID-RCM704>3.0.CO;2-R. View

4.
Fox K . Targeting DNA with triplexes. Curr Med Chem. 2000; 7(1):17-37. DOI: 10.2174/0929867003375506. View

5.
Praseuth D, Guieysse A, Helene C . Triple helix formation and the antigene strategy for sequence-specific control of gene expression. Biochim Biophys Acta. 2000; 1489(1):181-206. DOI: 10.1016/s0167-4781(99)00149-9. View