» Articles » PMID: 15289610

Dose-dependent Response of FGF-2 for Lymphangiogenesis

Overview
Specialty Science
Date 2004 Aug 4
PMID 15289610
Citations 116
Authors
Affiliations
Soon will be listed here.
Abstract

Spatio-temporal studies on the growth of capillary blood vessels and capillary lymphatic vessels in tissue remodeling have suggested that lymphangiogenesis is angiogenesis-dependent. We revisited this concept by using fibroblast growth factor 2 (FGF-2) (80 ng) to stimulate the growth of both vessel types in the mouse cornea. When we lowered the dose of FGF-2 in the cornea 6.4-fold (12.5 ng), the primary response was lymphangiogenic. Further investigation revealed that vascular endothelial growth factor-C and -D are required for this apparent lymphangiogenic property of FGF-2, and when the small amount of accompanying angiogenesis was completely suppressed, lymphangiogenesis remained unaffected. Our findings demonstrate that there is a dose-dependent response of FGF-2 for lymphangiogenesis, and lymphangiogenesis can occur in the absence of a preexisting or developing vascular bed, i.e., in the absence of angiogenesis, in the mouse cornea.

Citing Articles

Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review).

Zhang Z, Zhao R, Wu X, Ma Y, He Y Mol Med Rep. 2024; 31(2).

PMID: 39635819 PMC: 11638739. DOI: 10.3892/mmr.2024.13412.


Lymphatic system regulation of anti-cancer immunity and metastasis.

Lei P, Fraser C, Jones D, Ubellacker J, Padera T Front Immunol. 2024; 15:1449291.

PMID: 39211044 PMC: 11357954. DOI: 10.3389/fimmu.2024.1449291.


Review of treatment strategies after lymphadenectomy: From molecular therapeutics to immediate microsurgical lymphatic reconstruction.

Sung C, Wang J, Chang J, Wong A J Vasc Surg Venous Lymphat Disord. 2024; 12(5):101844.

PMID: 38316291 PMC: 11523459. DOI: 10.1016/j.jvsv.2024.101844.


Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology.

Montenegro-Navarro N, Garcia-Baez C, Garcia-Caballero M Nat Commun. 2023; 14(1):8389.

PMID: 38104163 PMC: 10725466. DOI: 10.1038/s41467-023-44133-x.


Dual gene-activated dermal scaffolds regulate angiogenesis and wound healing by mediating the coexpression of VEGF and angiopoietin-1.

Weng T, Yang M, Zhang W, Jin R, Xia S, Zhang M Bioeng Transl Med. 2023; 8(5):e10562.

PMID: 37693053 PMC: 10487340. DOI: 10.1002/btm2.10562.


References
1.
St Croix B, Rago C, Velculescu V, Traverso G, Romans K, Montgomery E . Genes expressed in human tumor endothelium. Science. 2000; 289(5482):1197-202. DOI: 10.1126/science.289.5482.1197. View

2.
Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y . Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997; 16(13):3898-911. PMC: 1170014. DOI: 10.1093/emboj/16.13.3898. View

3.
Oh S, Jeltsch M, Birkenhager R, McCarthy J, Weich H, Christ B . VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol. 1997; 188(1):96-109. DOI: 10.1006/dbio.1997.8639. View

4.
Singer A, Clark R . Cutaneous wound healing. N Engl J Med. 1999; 341(10):738-46. DOI: 10.1056/NEJM199909023411006. View

5.
Dor Y, Djonov V, Abramovitch R, Itin A, Fishman G, Carmeliet P . Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 2002; 21(8):1939-47. PMC: 125962. DOI: 10.1093/emboj/21.8.1939. View