» Articles » PMID: 15279939

A Simple Screening Protocol for the Identification of Quorum Signal Antagonists

Overview
Specialty Microbiology
Date 2004 Jul 29
PMID 15279939
Citations 94
Authors
Affiliations
Soon will be listed here.
Abstract

Quorum sensing (QS) is a mechanism by which diverse microorganisms can control specific processes in response to population density. A relatively well-known form of QS among Proteobacteria involves production and subsequent response to acylated homoserine lactones (AHLs). Quorum sensing inhibition (QSI), targeting AHL-dependent signaling, has been reported as a strategy for the control of biofilm formation used by several marine organisms. We developed a simple soft agar overlay protocol, based on pigmentation inhibition, to rapidly screen for the presence of potential QSI by bacteria and plants. For bacterial screens, test organisms are first streaked onto their appropriate media and incubated overnight. For plant screens, the plant material (leaf, stem, flower, etc.) is placed onto LB agar. The bacterial growth or plant samples are then covered with an overlay of LB soft agar containing an inoculum of either Pseudomonas aureofaciens 30-84 or Chromobacterium violaceum ATCC 12472 (indicator cultures) and then incubated overnight. These indicator bacteria regulate pigment production by N-hexanoyl-HSL (C6-HSL) QS and are readily inhibited by AHL analogues and other antagonists. QSI is indicated by the lack of pigment production of the indicator culture in the vicinity of the test sample. Growth inhibition of the indicator culture indicates possible antibiotic production. Two different biosensor organisms based on derivatives of Agrobacterium tumefaciens and C. violaceum, capable of detecting a range of AHLs were used to determine whether QSI is due to the production of interfering AHLs competing with the C6-HSL regulation of C. violaceum and P. aureofaciens pigment production. This simple protocol will facilitate the screening of multiple organisms for the production of potential antifouling compounds.

Citing Articles

Innovative application of ceftriaxone as a quorum sensing inhibitor in Pseudomonas aeruginosa.

Naga N, El-Badan D, Mabrouk M, Rateb H, Ghanem K, Shaaban M Sci Rep. 2025; 15(1):5022.

PMID: 39934154 PMC: 11814147. DOI: 10.1038/s41598-025-87609-0.


Quorum quenching activity of endophytic sp. EBS9 from and its biocontrol applications.

Paul E, Sharma C, Chaturvedi P, Bhatnagar P Curr Res Microb Sci. 2024; 7:100307.

PMID: 39584039 PMC: 11585653. DOI: 10.1016/j.crmicr.2024.100307.


Two cinnamoyl hydroxamates as potential quorum sensing inhibitors against .

Pan D, Wu H, Li J, Wang B, Jia A Front Cell Infect Microbiol. 2024; 14:1424038.

PMID: 39165918 PMC: 11333444. DOI: 10.3389/fcimb.2024.1424038.


Synthesis of the Novel -(2-Hexadecynoyl)-l-Homoserine Lactone and Evaluation of Its Antiquorum Sensing Activity in .

Sanabria-Rios D, Garcia-Del-Valle R, Bosh-Fonseca S, Gonzalez-Pagan J, Diaz-Rosa A, Acevedo-Rosario K ACS Omega. 2024; 9(30):32536-32546.

PMID: 39100292 PMC: 11292648. DOI: 10.1021/acsomega.4c01121.


as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens.

Issac Abraham S, Arumugam V, Mary N, Dharmadhas J, Sundararaj R, Devanesan A Life (Basel). 2024; 14(7).

PMID: 39063540 PMC: 11278316. DOI: 10.3390/life14070785.