» Articles » PMID: 15265537

Changes in Neutrophil Functions in Astronauts

Overview
Publisher Elsevier
Date 2004 Jul 22
PMID 15265537
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

Exploration class human spaceflight missions will require astronauts with robust immune systems. Innate immunity will be an essential element for the healthcare maintenance of astronauts during these lengthy expeditions. This study investigated neutrophil phagocytosis, oxidative burst, and degranulation of 25 astronauts after four space shuttle missions and in nine healthy control subjects. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch, immediately after landing, and 3 days after landing. The number of neutrophils increased by 85% at landing compared to preflight levels. The mean values for phagocytosis of Escherichia coli and oxidative burst capacity in neutrophils from astronauts on the 5-day mission were not significantly different from those observed in neutrophils from the control subjects. Before and after 9- to 11-day missions, however, phagocytosis and oxidative burst capacities were significantly lower than control mean values. No consistent changes in degranulation or expression of surface markers were observed before or after any of the space missions. This study indicates that neutrophil phagocytic and oxidative functions are affected by factors associated with space flight and this relationship may depend on mission duration.

Citing Articles

Challenges for the human immune system after leaving Earth.

Marchal S, Chouker A, Bereiter-Hahn J, Kraus A, Grimm D, Kruger M NPJ Microgravity. 2024; 10(1):106.

PMID: 39557881 PMC: 11574097. DOI: 10.1038/s41526-024-00446-9.


Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions.

Abdelfattah F, Schulz H, Wehland M, Corydon T, Sahana J, Kraus A Int J Mol Sci. 2024; 25(18).

PMID: 39337501 PMC: 11431953. DOI: 10.3390/ijms251810014.


Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability.

Nickerson C, McLean R, Barrila J, Yang J, Thornhill S, Banken L Microbiol Mol Biol Rev. 2024; 88(3):e0014423.

PMID: 39158275 PMC: 11426028. DOI: 10.1128/mmbr.00144-23.


Establishing a method for the cryopreservation of viable peripheral blood mononuclear cells in the International Space Station.

Ishii H, Endo R, Hamanaka S, Hidaka N, Miyauchi M, Hagiwara N NPJ Microgravity. 2024; 10(1):84.

PMID: 39122696 PMC: 11315897. DOI: 10.1038/s41526-024-00423-2.


Long-term space missions' effects on the human organism: what we do know and what requires further research.

Tomsia M, Ciesla J, Smieszek J, Florek S, Macionga A, Michalczyk K Front Physiol. 2024; 15:1284644.

PMID: 38415007 PMC: 10896920. DOI: 10.3389/fphys.2024.1284644.