Chemistry of Covalent Inhibition of the Gastric (H+, K+)-ATPase by Proton Pump Inhibitors
Overview
Authors
Affiliations
Proton pump inhibitors (PPIs), drugs that are widely used for treatment of acid related diseases, are either substituted pyridylmethylsulfinyl benzimidazole or imidazopyridine derivatives. They are all prodrugs that inhibit the acid-secreting gastric (H(+), K(+))-ATPase by acid activation to reactive thiophiles that form disulfide bonds with one or more cysteines accessible from the exoplasmic surface of the enzyme. This unique acid-catalysis mechanism had been ascribed to the nucleophilicity of the pyridine ring. However, the data obtained here show that their conversion to the reactive cationic thiophilic sulfenic acid or sulfenamide depends mainly not on pyridine protonation but on a second protonation of the imidazole component that increases the electrophilicity of the C-2 position on the imidazole. This protonation results in reaction of the C-2 with the unprotonated fraction of the pyridine ring to form the reactive derivatives. The relevant PPI pK(a)'s were determined by UV spectroscopy of the benzimidazole or imidazopyridine sulfinylmethyl moieties at different medium pH. Synthesis of a relatively acid stable analogue, N(1)-methyl lansoprazole, (6b), allowed direct determination of both pK(a) values of this intact PPI allowing calculation of the two pK(a) values for all the PPIs. These values predict their relative acid stability and thus the rate of reaction with cysteines of the active proton pump at the pH of the secreting parietal cell. The PPI accumulates in the secretory canaliculus of the parietal cell due to pyridine protonation then binds to the pump and is activated by the second protonation on the surface of the protein to allow disulfide formation.
Site-specific activation of the proton pump inhibitor rabeprazole by tetrathiolate zinc centres.
Marker T, Steimbach R, Perez-Borrajero C, Luzarowski M, Hartmann E, Schleich S Nat Chem. 2025; .
PMID: 39979415 DOI: 10.1038/s41557-025-01745-8.
Klahn P ChemMedChem. 2024; 20(2):e202400791.
PMID: 39564941 PMC: 11733470. DOI: 10.1002/cmdc.202400791.
Protein Haptenation and Its Role in Allergy.
Aleksic M, Meng X Chem Res Toxicol. 2024; 37(6):850-872.
PMID: 38834188 PMC: 11187640. DOI: 10.1021/acs.chemrestox.4c00062.
Kheir K, Al Jassem O, El Koubayati G, Haddad F Cureus. 2024; 16(2):e54483.
PMID: 38516446 PMC: 10955444. DOI: 10.7759/cureus.54483.
An H, Chen J, Li S, Chen A Dig Dis Sci. 2024; 69(3):670-682.
PMID: 38252210 DOI: 10.1007/s10620-023-08233-4.