» Articles » PMID: 15189899

Nanoelectropulse-induced Phosphatidylserine Translocation

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2004 Jun 11
PMID 15189899
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

Nanosecond, megavolt-per-meter, pulsed electric fields induce phosphatidylserine (PS) externalization, intracellular calcium redistribution, and apoptosis in Jurkat T-lymphoblasts, without causing immediately apparent physical damage to the cells. Intracellular calcium mobilization occurs within milliseconds of pulse exposure, and membrane phospholipid translocation is observed within minutes. Pulsed cells maintain cytoplasmic membrane integrity, blocking propidium iodide and Trypan blue. Indicators of apoptosis-caspase activation and loss of mitochondrial membrane potential-appear in nanoelectropulsed cells at later times. Although a theoretical framework has been established, specific mechanisms through which external nanosecond pulsed electric fields trigger intracellular responses in actively growing cells have not yet been experimentally characterized. This report focuses on the membrane phospholipid rearrangement that appears after ultrashort pulse exposure. We present evidence that the minimum field strength required for PS externalization in actively metabolizing Jurkat cells with 7-ns pulses produces transmembrane potentials associated with increased membrane conductance when pulse widths are microseconds rather than nanoseconds. We also show that nanoelectropulse trains delivered at repetition rates from 2 to 2000 Hz have similar effects, that nanoelectropulse-induced PS externalization does not require calcium in the external medium, and that the pulse regimens used in these experiments do not cause significant intra- or extracellular Joule heating.

Citing Articles

Enhanced Cellular Doxorubicin Uptake via Delayed Exposure Following Nanosecond Pulsed Electric Field Treatment: An In Vitro Study.

Ma R, Wang Y, Wang Z, Yin S, Liu Z, Yan K Pharmaceutics. 2024; 16(7).

PMID: 39065548 PMC: 11280291. DOI: 10.3390/pharmaceutics16070851.


Glioblastoma Therapy: Past, Present and Future.

Obrador E, Moreno-Murciano P, Oriol-Caballo M, Lopez-Blanch R, Pineda B, Gutierrez-Arroyo J Int J Mol Sci. 2024; 25(5).

PMID: 38473776 PMC: 10931797. DOI: 10.3390/ijms25052529.


How to alleviate cardiac injury from electric shocks at the cellular level.

Sowa P, Kielbik A, Pakhomov A, Gudvangen E, Mangalanathan U, Adams V Front Cardiovasc Med. 2023; 9:1004024.

PMID: 36620647 PMC: 9812960. DOI: 10.3389/fcvm.2022.1004024.


Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora's Box.

Ruiz-Fernandez A, Campos L, Gutierrez-Maldonado S, Nunez G, Villanelo F, Perez-Acle T Int J Mol Sci. 2022; 23(11).

PMID: 35682837 PMC: 9181413. DOI: 10.3390/ijms23116158.


Nanosecond Pulsed Electric Field Only Transiently Affects the Cellular and Molecular Processes of Leydig Cells.

Kasprzycka W, Trebinska-Stryjewska A, Lewandowski R, Stepinska M, Osuchowska P, Dobrzynska M Int J Mol Sci. 2021; 22(20).

PMID: 34681896 PMC: 8541366. DOI: 10.3390/ijms222011236.


References
1.
Benz R, Beckers F, Zimmermann U . Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol. 1979; 48(2):181-204. DOI: 10.1007/BF01872858. View

2.
Benz R, Zimmermann U . Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochim Biophys Acta. 1980; 597(3):637-42. DOI: 10.1016/0005-2736(80)90236-9. View

3.
Orrenius S, Zhivotovsky B, Nicotera P . Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003; 4(7):552-65. DOI: 10.1038/nrm1150. View

4.
Heimburg T . Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry. Biochim Biophys Acta. 1998; 1415(1):147-62. DOI: 10.1016/s0005-2736(98)00189-8. View

5.
Basse F, Stout J, Sims P, Wiedmer T . Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid. J Biol Chem. 1996; 271(29):17205-10. DOI: 10.1074/jbc.271.29.17205. View