» Articles » PMID: 15145828

Nuclear Surveillance and Degradation of Hypomodified Initiator TRNAMet in S. Cerevisiae

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2004 May 18
PMID 15145828
Citations 290
Authors
Affiliations
Soon will be listed here.
Abstract

The tRNA m(1)A58 methyltransferase is composed of two subunits encoded by the essential genes TRM6 and TRM61 (formerly GCD10 and GCD14). The trm6-504 mutation results in a defective m(1)A methyltransferase (Mtase) and a temperature-sensitive growth phenotype that is attributable to the absence of m(1)A58 and consequential tRNA(i)(Met) instability. We used a genetic approach to identify the genes responsible for tRNA(i)(Met) degradation in trm6 cells. Three recessive extragenic mutations that suppress trm6-504 mutant phenotypes and restore hypomodified tRNA(i)(Met) to near normal levels were identified. The wild-type allele of one suppressor, DIS3/RRP44, encodes a 3'-5' exoribonuclease and a member of the multisubunit exosome complex. We provide evidence that a functional nuclear exosome is required for the degradation of tRNA(i)(Met) lacking m(1)A58. A second suppressor gene encodes Trf4p, a DNA polymerase (pol sigma) with poly(A) polymerase activity. Whereas deletion of TRF4 leads to stabilization of tRNA(i)(Met), overexpression of Trf4p destabilizes the hypomodified tRNA(i)(Met) in trm6 cells. The hypomodified, but not wild-type, pre-tRNA(i)(Met) accumulates as a polyadenylated species, whose abundance and length distribution both increase upon Trf4p overexpression. These data indicate that a tRNA surveillance pathway exists in yeast that requires Trf4p and the exosome for polyadenylation and degradation of hypomodified pre-tRNA(i)(Met).

Citing Articles

Spatial regulation of NSUN2-mediated tRNA m5C installation in cognitive function.

Gonskikh Y, Tirrito C, Bommisetti P, Mendoza-Figueroa M, Stoute J, Kim J Nucleic Acids Res. 2024; 53(2.

PMID: 39673800 PMC: 11754655. DOI: 10.1093/nar/gkae1169.


Clinician's Guide to Epitranscriptomics: An Example of N-Methyladenosine (mA) RNA Modification and Cancer.

Kvolik Pavic A, conkas J, Mumlek I, Zubcic V, Ozretic P Life (Basel). 2024; 14(10).

PMID: 39459530 PMC: 11508930. DOI: 10.3390/life14101230.


The MTR4/hnRNPK complex surveils aberrant polyadenylated RNAs with multiple exons.

Taniue K, Sugawara A, Zeng C, Han H, Gao X, Shimoura Y Nat Commun. 2024; 15(1):8684.

PMID: 39419981 PMC: 11487169. DOI: 10.1038/s41467-024-51981-8.


Combining Nanopore direct RNA sequencing with genetics and mass spectrometry for analysis of T-loop base modifications across 42 yeast tRNA isoacceptors.

Shaw E, Thomas N, Jones J, Abu-Shumays R, Vaaler A, Akeson M Nucleic Acids Res. 2024; 52(19):12074-12092.

PMID: 39340295 PMC: 11514469. DOI: 10.1093/nar/gkae796.


Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.

Jann C, Giofre S, Bhattacharjee R, Lemke E Chem Rev. 2024; 124(18):10281-10362.

PMID: 39120726 PMC: 11441406. DOI: 10.1021/acs.chemrev.3c00878.


References
1.
Castano I, Brzoska P, Sadoff B, Chen H, Christman M . Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev. 1996; 10(20):2564-76. DOI: 10.1101/gad.10.20.2564. View

2.
van Hoof A, Frischmeyer P, Dietz H, Parker R . Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science. 2002; 295(5563):2262-4. DOI: 10.1126/science.1067272. View

3.
GEHRKE C, KUO K . Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J Chromatogr. 1989; 471:3-36. DOI: 10.1016/s0021-9673(00)94152-9. View

4.
Kohrer K, Domdey H . Preparation of high molecular weight RNA. Methods Enzymol. 1991; 194:398-405. DOI: 10.1016/0076-6879(91)94030-g. View

5.
Maquat L . Molecular biology. Skiing toward nonstop mRNA decay. Science. 2002; 295(5563):2221-2. DOI: 10.1126/science.1071285. View