» Articles » PMID: 15069073

Tissue Transglutaminase Has Intrinsic Kinase Activity: Identification of Transglutaminase 2 As an Insulin-like Growth Factor-binding Protein-3 Kinase

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2004 Apr 8
PMID 15069073
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

Tissue transglutaminase (TG2) is a ubiquitous enzyme that cross-links glutamine residues with lysine residues, resulting in protein polymerization, cross-linking of dissimilar proteins, and incorporation of diamines and polyamines into proteins. It has not previously been known to have kinase activity. Recently, insulin-like growth factor-binding protein-3 (IGFBP-3) has been reported to be phosphorylated by breast cancer cell membranes. We purified the IGFBP-3 kinase activity from solubilized T47D breast cancer cell membranes using gel filtration, ion-exchange chromatography, and IGFBP-3 affinity chromatography. The fractions containing kinase activity were further purified by high pressure liquid chromatography and analyzed by tandem mass spectroscopy. TG2 was detected in fractions containing kinase activity. Antisera to TG2 and protein A-Sepharose were used to immunoprecipitate TG2 from membrane fractions. The immunoprecipitates retained IGFBP-3 kinase, whereas immunoprecipitation deleted kinase activity in the membrane supernatant. The inhibitors of TG2, cystamine and monodansyl cadaverine, abolished the ability of the T47D cell membrane preparation to phosphorylate IGFBP-3. Both TG2 purified from guinea pig liver and recombinant human TG2 expressed in insect cells were able to phosphorylate IGFBP-3. TG2 kinase activity was inhibited in a concentration-dependent fashion by calcium, which has previously been shown to be important for the cross-linking activity of TG2. These data provide compelling evidence that TG2 has intrinsic kinase activity, a function that has not previously been ascribed to TG2. Furthermore, we provide evidence that TG2 is a major component of the IGFBP-3 kinase activity present on breast cancer cell membranes.

Citing Articles

Distinct conformational states enable transglutaminase 2 to promote cancer cell survival versus cell death.

Aplin C, Zielinski K, Pabit S, Ogunribido D, Katt W, Pollack L Commun Biol. 2024; 7(1):982.

PMID: 39134806 PMC: 11319651. DOI: 10.1038/s42003-024-06672-x.


Transglutaminase 2-mediated histone monoaminylation and its role in cancer.

Li H, Wu J, Zhang N, Zheng Q Biosci Rep. 2024; 44(8).

PMID: 39115570 PMC: 11345673. DOI: 10.1042/BSR20240493.


Transglutaminase 2 in diabetes mellitus: Unraveling its multifaceted role and therapeutic implications for vascular complications.

Ha K Theranostics. 2024; 14(6):2329-2344.

PMID: 38646650 PMC: 11024853. DOI: 10.7150/thno.95742.


Transglutaminases are oncogenic biomarkers in human cancers and therapeutic targeting of TGM2 blocks chemoresistance and macrophage infiltration in pancreatic cancer.

Zhang S, Yao H, Li H, Su T, Jiang S, Wang H Cell Oncol (Dordr). 2023; 46(5):1473-1492.

PMID: 37246171 DOI: 10.1007/s13402-023-00824-7.


Involvement and possible role of transglutaminases 1 and 2 in mediating fibrotic signalling, collagen cross-linking and cell proliferation in neonatal rat ventricular fibroblasts.

Al-Udatt D, Tranchant C, Al-Husein B, Hiram R, Al-Dwairi A, Alqudah M PLoS One. 2023; 18(2):e0281320.

PMID: 36848364 PMC: 9970086. DOI: 10.1371/journal.pone.0281320.