Dabrowski-Tumanski P, Goundaroulis D, Stasiak A, Rawdon E, Sulkowska J
Protein Sci. 2024; 33(9):e5133.
PMID: 39167036
PMC: 11337915.
DOI: 10.1002/pro.5133.
Ferreira S, Sriramoju M, Hsu S, Faisca P, Machuqueiro M
J Chem Inf Model. 2024; 64(17):6827-6837.
PMID: 39045738
PMC: 11388461.
DOI: 10.1021/acs.jcim.4c00880.
Kohno Y, Ito A, Okamoto A, Yamagami R, Hirata A, Hori H
J Biochem. 2023; 175(1):43-56.
PMID: 37844264
PMC: 11640301.
DOI: 10.1093/jb/mvad076.
Jedrzejewski M, Belza B, Lewandowska I, Sadlej M, Perlinska A, Augustyniak R
Comput Struct Biotechnol J. 2023; 21:3999-4008.
PMID: 37649713
PMC: 10462857.
DOI: 10.1016/j.csbj.2023.08.001.
Hori H
Genes (Basel). 2023; 14(2).
PMID: 36833309
PMC: 9957541.
DOI: 10.3390/genes14020382.
Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases.
Strassler S, Bowles I, Dey D, Jackman J, Conn G
J Biol Chem. 2022; 298(10):102393.
PMID: 35988649
PMC: 9508554.
DOI: 10.1016/j.jbc.2022.102393.
The open reading frame encodes the SPOUT methyltransferase RlmP forming 2'--methylguanosine at position 2553 in the A-loop of 23S rRNA.
Roovers M, Labar G, Wolff P, Feller A, Van Elder D, Soin R
RNA. 2022; 28(9):1185-1196.
PMID: 35710145
PMC: 9380741.
DOI: 10.1261/rna.079131.122.
Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution.
Roovers M, Droogmans L, Grosjean H
Genes (Basel). 2021; 12(2).
PMID: 33499018
PMC: 7912444.
DOI: 10.3390/genes12020140.
To Tie or Not to Tie? That Is the Question.
Dabrowski-Tumanski P, Sulkowska J
Polymers (Basel). 2019; 9(9).
PMID: 30965758
PMC: 6418553.
DOI: 10.3390/polym9090454.
Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium .
Hori H
Front Genet. 2019; 10:204.
PMID: 30906314
PMC: 6418473.
DOI: 10.3389/fgene.2019.00204.
7-Methylguanosine Modifications in Transfer RNA (tRNA).
Tomikawa C
Int J Mol Sci. 2018; 19(12).
PMID: 30562954
PMC: 6320965.
DOI: 10.3390/ijms19124080.
A Family Divided: Distinct Structural and Mechanistic Features of the SpoU-TrmD (SPOUT) Methyltransferase Superfamily.
Krishnamohan A, Jackman J
Biochemistry. 2018; 58(5):336-345.
PMID: 30457841
PMC: 6541868.
DOI: 10.1021/acs.biochem.8b01047.
Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA.
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C
Microorganisms. 2018; 6(4).
PMID: 30347855
PMC: 6313347.
DOI: 10.3390/microorganisms6040110.
Structural and biochemical analysis of the dual-specificity Trm10 enzyme from prompts reconsideration of its catalytic mechanism.
Singh R, Feller A, Roovers M, Van Elder D, Wauters L, Droogmans L
RNA. 2018; 24(8):1080-1092.
PMID: 29848639
PMC: 6049504.
DOI: 10.1261/rna.064345.117.
The Evolution of Substrate Specificity by tRNA Modification Enzymes.
McKenney K, Rubio M, Alfonzo J
Enzymes. 2017; 41:51-88.
PMID: 28601226
PMC: 6589034.
DOI: 10.1016/bs.enz.2017.03.002.
Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA.
Hori H
Biomolecules. 2017; 7(1).
PMID: 28264529
PMC: 5372735.
DOI: 10.3390/biom7010023.
Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3',5'-cAMP in Bacteria.
Zhang Y, Agrebi R, Bellows L, Collet J, Kaever V, Grundling A
J Biol Chem. 2016; 292(1):313-327.
PMID: 27881678
PMC: 5217690.
DOI: 10.1074/jbc.M116.758896.
In Search of Functional Advantages of Knots in Proteins.
Dabrowski-Tumanski P, Stasiak A, Sulkowska J
PLoS One. 2016; 11(11):e0165986.
PMID: 27806097
PMC: 5091781.
DOI: 10.1371/journal.pone.0165986.
Methyl transfer by substrate signaling from a knotted protein fold.
Christian T, Sakaguchi R, Perlinska A, Lahoud G, Ito T, Taylor E
Nat Struct Mol Biol. 2016; 23(10):941-948.
PMID: 27571175
PMC: 5429141.
DOI: 10.1038/nsmb.3282.
Single-Turnover Kinetics of Methyl Transfer to tRNA by Methyltransferases.
Hou Y
Methods Mol Biol. 2016; 1421:79-96.
PMID: 26965259
PMC: 4864976.
DOI: 10.1007/978-1-4939-3591-8_8.