» Articles » PMID: 14976557

The Zap1 Transcriptional Activator Also Acts As a Repressor by Binding Downstream of the TATA Box in ZRT2

Overview
Journal EMBO J
Date 2004 Feb 21
PMID 14976557
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

The zinc-responsive transcriptional activator Zap1 regulates the expression of both high- and low-affinity zinc uptake permeases encoded by the ZRT1 and ZRT2 genes. Zap1 mediates this response by binding to zinc-responsive elements (ZREs) located within the promoter regions of each gene. ZRT2 has a remarkably different expression profile in response to zinc compared to ZRT1. While ZRT1 is maximally induced during zinc limitation, ZRT2 is repressed in low zinc but remains induced upon zinc supplementation. In this study, we determined the mechanism underlying this paradoxical Zap1-dependent regulation of ZRT2. We demonstrate that a nonconsensus ZRE (ZRT2 ZRE3), which overlaps with one of the ZRT2 transcriptional start sites, is essential for repression of ZRT2 in low zinc and that Zap1 binds to ZRT2 ZRE3 with a low affinity. The low-affinity ZRE is also essential for the ZRT2 expression profile. These results indicate that the unusual pattern of ZRT2 regulation among Zap1 target genes involves the antagonistic effect of Zap1 binding to a low-affinity ZRE repressor site and high-affinity ZREs required for activation.

Citing Articles

Zinc Starvation Induces Cell Wall Remodeling and Activates the Antioxidant Defense System in .

Santos T, Soares L, Oliveira L, Moraes D, Mendes M, Soares C J Fungi (Basel). 2024; 10(2).

PMID: 38392790 PMC: 10890210. DOI: 10.3390/jof10020118.


Global Molecular Response of to Zinc Deprivation: Analyses at Transcript, Protein and MicroRNA Levels.

Mesquita L, Bailao A, Santana de Curcio J, da Silva K, da Rocha Fernandes G, Silva-Bailao M J Fungi (Basel). 2023; 9(3).

PMID: 36983449 PMC: 10056003. DOI: 10.3390/jof9030281.


Zinc homeostasis in Schizosaccharomyces pombe.

Yao R, Li R, Huang Y Arch Microbiol. 2023; 205(4):126.

PMID: 36943461 DOI: 10.1007/s00203-023-03473-4.


Transcriptional Regulation and Protein Localization of Zip10, Zip13 and Zip14 Transporters of Freshwater Teleost Yellow Catfish Following Zn Exposure in a Heterologous HEK293T Model.

Liu S, Xu Y, Tan X, Zhao T, Zhang D, Yang H Int J Mol Sci. 2022; 23(14).

PMID: 35887381 PMC: 9321221. DOI: 10.3390/ijms23148034.


Characterization and functional analysis of zinc trafficking in the human fungal pathogen .

Takacs T, Nemeth M, Bohner F, Vagvolgyi C, Jankovics F, Wilson D Open Biol. 2022; 12(7):220077.

PMID: 35857903 PMC: 9277298. DOI: 10.1098/rsob.220077.


References
1.
Bird A, Evans-Galea M, Blankman E, Zhao H, Luo H, Winge D . Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator. J Biol Chem. 2000; 275(21):16160-6. DOI: 10.1074/jbc.M000664200. View

2.
Kadam S, Emerson B . Mechanisms of chromatin assembly and transcription. Curr Opin Cell Biol. 2002; 14(3):262-8. DOI: 10.1016/s0955-0674(02)00330-7. View

3.
Lyons T, Gasch A, Gaither L, Botstein D, Brown P, Eide D . Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc Natl Acad Sci U S A. 2000; 97(14):7957-62. PMC: 16652. DOI: 10.1073/pnas.97.14.7957. View

4.
Bird A, Zhao H, Luo H, Jensen L, Srinivasan C, Winge D . A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator. EMBO J. 2000; 19(14):3704-13. PMC: 313982. DOI: 10.1093/emboj/19.14.3704. View

5.
Munsterkotter M, Barbaric S, Horz W . Transcriptional regulation of the yeast PHO8 promoter in comparison to the coregulated PHO5 promoter. J Biol Chem. 2000; 275(30):22678-85. DOI: 10.1074/jbc.M001409200. View