» Articles » PMID: 14966264

Enhanced Gene Silencing of HIV-1 Specific SiRNA Using MicroRNA Designed Hairpins

Overview
Specialty Biochemistry
Date 2004 Feb 18
PMID 14966264
Citations 92
Authors
Affiliations
Soon will be listed here.
Abstract

Post-transcriptional inhibition of HIV-1 replication can be achieved by RNA interference (RNAi). The cellular expression of short interfering RNA (siRNA) or short hairpin RNA (shRNA) homologous to regions of the HIV-1 genome decreases viral replication by the selective degradation of targeted RNA. Here, we demonstrate that another class of noncoding regulatory RNA, termed microRNA (miRNA), can be used to deliver antiviral RNAi. By incorporating sequences encoding siRNA targeting the HIV-1 transactivator protein tat into a human miR-30 pre-microRNA (pre-miRNA) backbone, we were able to express tat siRNA in cells. The tat siRNA delivered as pre-miRNA precursor was 80% more effective in reducing HIV-1 p24 antigen production than tat siRNA expressed as conventional shRNA. Our results confirm the utility of expressing HIV-1 specific siRNA through a miR-30 precursor stem-loop structure and suggest that this strategy can be used to increase the antiviral potency of RNAi.

Citing Articles

Clinical Proof-of-Concept of a Non-Gene Editing Technology Using miRNA-Based shRNA to Engineer Allogeneic CAR T-Cells.

Lonez C, Bolsee J, Huberty F, Nguyen T, Jacques-Hespel C, Anguille S Int J Mol Sci. 2025; 26(4).

PMID: 40004122 PMC: 11855736. DOI: 10.3390/ijms26041658.


Genetic Alchemy unveiled: MicroRNA-mediated gene therapy as the Artisan craft in the battlefront against hepatocellular carcinoma-a comprehensive chronicle of strategies and innovations.

Murshed A, Alnoud M, Ahmad S, Ullah Khan S, Alissa M, Alsuwat M Front Genet. 2024; 15:1356972.

PMID: 38915826 PMC: 11194743. DOI: 10.3389/fgene.2024.1356972.


Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies.

Liu B, Brendel C, Vinjamur D, Zhou Y, Harris C, McGuinness M Mol Ther. 2022; 30(8):2693-2708.

PMID: 35526095 PMC: 9372373. DOI: 10.1016/j.ymthe.2022.05.002.


Harnessing Intronic microRNA Structures to Improve Tolerance and Expression of shRNAs in Animal Cells.

Challagulla A, Tizard M, Doran T, Cahill D, Jenkins K Methods Protoc. 2022; 5(1).

PMID: 35200534 PMC: 8879667. DOI: 10.3390/mps5010018.


A new self-attenuated therapeutic influenza vaccine that uses host cell-restricted attenuation by artificial microRNAs.

Wen K, Wang H, Chen Y, Yang H, Zheng Z, Yan Y Int J Pharm. 2021; 612:121325.

PMID: 34883209 PMC: 8871448. DOI: 10.1016/j.ijpharm.2021.121325.


References
1.
Hammond S, Bernstein E, Beach D, Hannon G . An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000; 404(6775):293-6. DOI: 10.1038/35005107. View

2.
Bernstein E, Caudy A, Hammond S, Hannon G . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001; 409(6818):363-6. DOI: 10.1038/35053110. View

3.
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J . The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425(6956):415-9. DOI: 10.1038/nature01957. View

4.
Boden D, Pusch O, Lee F, Tucker L, Shank P, Ramratnam B . Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res. 2003; 31(17):5033-8. PMC: 212804. DOI: 10.1093/nar/gkg704. View

5.
Zeng Y, Cullen B . Sequence requirements for micro RNA processing and function in human cells. RNA. 2003; 9(1):112-23. PMC: 1370375. DOI: 10.1261/rna.2780503. View