» Articles » PMID: 14963654

The Nematode-resistance Gene, Mi-1, is Associated with an Inverted Chromosomal Segment in Susceptible Compared to Resistant Tomato

Overview
Publisher Springer
Specialty Genetics
Date 2004 Feb 14
PMID 14963654
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

The gene Mi-1 confers effective resistance in tomato ( Lycopersicon esculentum) against root-knot nematodes and some isolates of potato aphid. This locus was introgressed from L. peruvianum into the corresponding region on chromosome 6 in tomato. In nematode-resistant tomato, Mi-1 and six homologs are grouped into two clusters separated by 300 kb. Analysis of BAC clones revealed that the Mi-1 locus from susceptible tomato carried the same number and distribution of Mi-1 homologs, as did the resistant locus. Molecular markers flanking the resistant and susceptible loci were in the same relative orientation, but markers between the two clusters were in an inverse orientation. The simplest explanation for these observations is that there is an inversion between the two clusters of homologs when comparing the Mi-1 loci from L. esculentum and L. peruvianum. Such an inversion may explain previous observations of severe recombination suppression in the region. Two Mi-1 homologs identified from the BAC library derived from susceptible tomato are not linked to the chromosome 6 locus, but map to chromosome 5 in regions known to contain resistance gene loci in other solanaceous species.

Citing Articles

A chromosome-level reference genome facilitates the discovery of clubroot-resistant gene in Chinese cabbage.

Yang S, Wang X, Wang Z, Zhang W, Su H, Wei X Hortic Res. 2025; 12(3):uhae338.

PMID: 40046320 PMC: 11879649. DOI: 10.1093/hr/uhae338.


Two large inversions seriously suppress recombination and are essential for key genotype fixation in cabbage ( L. var. ).

Zhang B, Wu Y, Li S, Yang L, Zhuang M, Lv H Hortic Res. 2025; 11(4):uhae030.

PMID: 39896709 PMC: 11784747. DOI: 10.1093/hr/uhae030.


Scientific opinion on the ANSES analysis of Annex I of the EC proposal COM (2023) 411 (EFSA-Q-2024-00178).

Mullins E, Bresson J, Dalmay T, Dewhurst I, Epstein M, Firbank L EFSA J. 2024; 22(7):e8894.

PMID: 38993591 PMC: 11237874. DOI: 10.2903/j.efsa.2024.8894.


A catalogue of recombination coldspots in interspecific tomato hybrids.

Fuentes R, Nieuwenhuis R, Chouaref J, Hesselink T, van Dooijeweert W, van den Broeck H PLoS Genet. 2024; 20(7):e1011336.

PMID: 38950081 PMC: 11244794. DOI: 10.1371/journal.pgen.1011336.


Unraveling the enigma of root-knot nematodes: from origins to advanced management strategies in agriculture.

Vashisth S, Kumar P, Chandel V, Kumar R, Verma S, Chandel R Planta. 2024; 260(2):36.

PMID: 38922545 DOI: 10.1007/s00425-024-04464-5.


References
1.
Brommonschenkel S, Frary A, Tanksley S . The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact. 2000; 13(10):1130-8. DOI: 10.1094/MPMI.2000.13.10.1130. View

2.
Ammiraju J, Veremis J, Huang X, Roberts P, Kaloshian I . The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet. 2003; 106(3):478-84. DOI: 10.1007/s00122-002-1106-y. View

3.
Bonnema G, Hontelez J, Verkerk R, Zhang Y, van Daelen R, van Kammen A . An improved method of partially digesting plant megabase DNA suitable for YAC cloning: application to the construction of a 5.5 genome equivalent YAC library of tomato. Plant J. 1996; 9(1):125-33. DOI: 10.1046/j.1365-313x.1996.09010125.x. View

4.
Baudry E, Kerdelhue C, Innan H, Stephan W . Species and recombination effects on DNA variability in the tomato genus. Genetics. 2001; 158(4):1725-35. PMC: 1461759. DOI: 10.1093/genetics/158.4.1725. View

5.
Michelmore R, Meyers B . Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998; 8(11):1113-30. DOI: 10.1101/gr.8.11.1113. View