Givanoudi S, Heyndrickx M, Depuydt T, Khorshid M, Robbens J, Wagner P
Sensors (Basel). 2023; 23(2).
PMID: 36679407
PMC: 9860941.
DOI: 10.3390/s23020613.
Polak T, Mejas R, Jamnik P, Kralj Cigic I, Poklar Ulrih N, Cigic B
Foods. 2021; 10(11).
PMID: 34829121
PMC: 8618307.
DOI: 10.3390/foods10112840.
Kralj Cigic I, Rupnik S, Rijavec T, Poklar Ulrih N, Cigic B
Foods. 2020; 9(5).
PMID: 32369919
PMC: 7278799.
DOI: 10.3390/foods9050547.
Winter A
Planta. 2014; 71(3):229-39.
PMID: 24554046
DOI: 10.1007/BF00384885.
Linskens H, Kochuyt A, So A
Planta. 2014; 82(2):111-22.
PMID: 24519833
DOI: 10.1007/BF01305715.
Studies on the hormonal relationships of algae in pure culture : II. The effect of potential precursors of indole-3-acetic acid on the growth of several freshwater blue-green algae.
Ahmad M, Winter A
Planta. 2014; 81(1):16-27.
PMID: 24519593
DOI: 10.1007/BF00385511.
Studies on the hormonal relationships of algae in pure culture : III. Tryptamine is an intermediate in the conversion of tryptophan to indole-3-acetic acid by the blue-green alga Chlorogloea fritschii.
Ahmad M, Winter A
Planta. 2014; 88(1):61-6.
PMID: 24504837
DOI: 10.1007/BF00396115.
Effects of Gibberellic Acid on Utilization of Auxin Precursors by Apical Segments of the Avena Coleoptile.
Sastry K, Muir R
Plant Physiol. 1965; 40(2):294-8.
PMID: 16656085
PMC: 550282.
DOI: 10.1104/pp.40.2.294.
Purification and properties of the amine oxidase of pea seedlings.
Mann P
Biochem J. 1955; 59(4):609-20.
PMID: 14363155
PMC: 1215626.
DOI: 10.1042/bj0590609.
The inhibition of pea-seedling diamine oxidase by chelating agents.
Hill J, Mann P
Biochem J. 1962; 85:198-207.
PMID: 13954525
PMC: 1243931.
DOI: 10.1042/bj0850198.
Further purification and properties of the amine oxidase of pea seedlings.
Mann P
Biochem J. 1961; 79:623-31.
PMID: 13766215
PMC: 1205696.
DOI: 10.1042/bj0790623.
The amine oxidases of mammalian plasma.
BLASCHKO H, Friedman P, Hawes R, Nilsson K
J Physiol. 1959; 145(2):384-404.
PMID: 13642308
PMC: 1356834.
DOI: 10.1113/jphysiol.1959.sp006149.
The oxidation of cystamine and homocystamine by mammalian enzymes.
Bergeret B, BLASCHKO H
Br J Pharmacol Chemother. 1957; 12(4):513-6.
PMID: 13489183
PMC: 1510597.
DOI: 10.1111/j.1476-5381.1957.tb00174.x.
Latent phenolase in extracts of broad-bean (Vicia faba L.) leaves. I. Activation by acid and alkali.
KENTEN R
Biochem J. 1957; 67(2):300-7.
PMID: 13471551
PMC: 1200152.
DOI: 10.1042/bj0670300.
The oxidation of tryptamine to 3-indolylacetaldehyde by plant amine oxidase.
Clarke A, Mann P
Biochem J. 1957; 65(4):763-74.
PMID: 13426099
PMC: 1199951.
DOI: 10.1042/bj0650763.
Manganese oxidation in the pea plant (Pisum sativum L.) grown under conditions of manganese toxicity.
KENTEN R, Mann P
Biochem J. 1957; 65(1):179-85.
PMID: 13403890
PMC: 1199846.
DOI: 10.1042/bj0650179.
The oxidation of cystamine and other sulfur-diamines by diamine-oxidase preparations.
Cavallini D, De Marco C, MONDOVI B
Experientia. 1956; 12(10):377-9.
PMID: 13375633
DOI: 10.1007/BF02157276.
Plant enzyme reactions leading to the formation of heterocyclic compounds. 2. The formation of indole.
Mann P, SMITHIES W
Biochem J. 1955; 61(1):101-5.
PMID: 13260182
PMC: 1215751.
DOI: 10.1042/bj0610101.
Plant enzyme reactions leading to the formation of heterocyclic compounds. 1. The formation of unsaturated pyrrolidine and piperidine compounds.
Mann P, SMITHIES W
Biochem J. 1955; 61(1):89-100.
PMID: 13260181
PMC: 1215750.
DOI: 10.1042/bj0610089.
The oxidation of tryptophan in pea-seedling tissues and extracts.
WILTSHIRE G
Biochem J. 1953; 55(3):408-16.
PMID: 13105647
PMC: 1269291.
DOI: 10.1042/bj0550408.