Vila J, Goldford J, Estrela S, Bajic D, Sanchez-Gorostiaga A, Damian-Serrano A
bioRxiv. 2023; .
PMID: 37961608
PMC: 10634833.
DOI: 10.1101/2023.10.25.564019.
Falchi F, Borlotti G, Ferretti F, Pellegrino G, Raneri M, Schiavoni M
Front Microbiol. 2021; 12:744458.
PMID: 34566945
PMC: 8461315.
DOI: 10.3389/fmicb.2021.744458.
Molina L, La Rosa R, Nogales J, Rojo F
Environ Microbiol. 2019; 21(7):2375-2390.
PMID: 30951237
PMC: 6850689.
DOI: 10.1111/1462-2920.14622.
Mochizuki S, Nishiyama R, Inoue A, Ojima T
J Biol Chem. 2015; 290(52):30962-74.
PMID: 26555267
PMC: 4692223.
DOI: 10.1074/jbc.M115.686725.
Hofle M
Microb Ecol. 2013; 5(1):17-26.
PMID: 24232295
DOI: 10.1007/BF02010574.
Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1.
Larkin A, Imperiali B
Biochemistry. 2009; 48(23):5446-55.
PMID: 19348502
PMC: 2694220.
DOI: 10.1021/bi900186u.
Oxidative possibilities in the catalase-positive Acetobacter species.
Stouthamer A
Antonie Van Leeuwenhoek. 1959; 25:241-64.
PMID: 13835022
DOI: 10.1007/BF02542850.
Biological synthesis of L-ascorbic acid in animal tissues: conversion of D-glucuronolactone and L-gulonolactone into L-ascorbic acid.
Chatterjee I, Chatterjee G, Ghosh N, Ghosh J, Guha B
Biochem J. 1960; 76:279-92.
PMID: 13692610
PMC: 1204705.
DOI: 10.1042/bj0760279.
Intermediate metabolism of aerobic spores. III. The mechanism of glucose and hexose phosphate oxidation in extracts of Bacillus cereus spores.
Doi R, HALVORSON H, Church B
J Bacteriol. 1959; 77(1):43-54.
PMID: 13620648
PMC: 290314.
DOI: 10.1128/jb.77.1.43-54.1959.
Dissimilation of C14-labeled glucose by Serratia marcescens.
Wasserman A, HOPKINS W
J Bacteriol. 1958; 75(4):492-3.
PMID: 13525360
PMC: 314685.
DOI: 10.1128/jb.75.4.492-493.1958.
Effect of freeze-drying on some enzyme systems of Serratia marcescens.
Wasserman A, HOPKINS W
Appl Microbiol. 1958; 6(1):49-52.
PMID: 13509656
PMC: 1057355.
DOI: 10.1128/am.6.1.49-52.1958.
Synthesis of cellulose by Acetobacter Xylinum. 3. Substrates and inhibitors.
Schramm M, GROMET Z, HESTRIN S
Biochem J. 1957; 67(4):669-79.
PMID: 13488922
PMC: 1200212.
DOI: 10.1042/bj0670669.
Metabolism of carbohydrates by Pseudomonas saccharophila. III. Oxidation of D-arabinose.
Palleroni N, DOUDOROFF M
J Bacteriol. 1957; 74(2):180-5.
PMID: 13475218
PMC: 289912.
DOI: 10.1128/jb.74.2.180-185.1957.
Glucose catabolism in Malleomyces pseudomallei.
BOKMAN A, LEVINE H, LUSBY M
J Bacteriol. 1957; 73(5):649-54.
PMID: 13428711
PMC: 289835.
DOI: 10.1128/jb.73.5.649-654.1957.
Studies on the oxidation of gluconate by animal tissues.
SALMONY D, WHITEHEAD J
Biochem J. 1954; 58(3):408-13.
PMID: 13208630
PMC: 1269914.
DOI: 10.1042/bj0580408.
[Chromatography of ternary compounds of mycelium of Penicillium brevi-compactum].
GODIN P
Antonie Van Leeuwenhoek. 1954; 20(3):321-8.
PMID: 13198128
DOI: 10.1007/BF02543736.
Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate.
Hashimoto W, Miyake O, Momma K, Kawai S, Murata K
J Bacteriol. 2000; 182(16):4572-7.
PMID: 10913091
PMC: 94629.
DOI: 10.1128/JB.182.16.4572-4577.2000.
Pathway for D-galactonate catabolism in nonpathogenic mycobacteria.
Szumilo T
J Bacteriol. 1981; 148(1):368-70.
PMID: 7287628
PMC: 216202.
DOI: 10.1128/jb.148.1.368-370.1981.
Physiology of dark fermentative growth of Rhodopseudomonas capsulata.
Madigan M, Cox J, Gest H
J Bacteriol. 1980; 142(3):908-15.
PMID: 6769916
PMC: 294116.
DOI: 10.1128/jb.142.3.908-915.1980.
Endo-polygalacturonate lyase of Cytophaga johnsonii.
Sundarraj N, Bhat J
Arch Mikrobiol. 1971; 77(2):155-64.
PMID: 5559468
DOI: 10.1007/BF00408608.