Developmental Differences in Renal Sulfate Reabsorption: Transport Kinetics in Brush Border Membrane Vesicles
Overview
Authors
Affiliations
Renal tubular reabsorption of inorganic sulfate is greater in younger than older guinea pigs. To determine the mechanism of this difference, we studied the transport of inorganic sulfate in renal brush border membrane vesicles (BBMV) obtained from young (< 25 days) and adult guinea pigs (> 60 days). BBMV were obtained by mechanical and osmotic disruption of dissected renal cortices followed by magnesium precipitation and differential centrifugation. After the membranes were incubated for 10 s in solutions containing inorganic sulfate at several concentrations (0.1-10 mM) and trace amounts of 35sulfate, intravesicular uptake was measured. Based on 35sulfur uptake, reabsorption transport kinetics (Vmax and Km) were estimated. BBMV obtained from young guinea pigs demonstrated higher sodium-sulfate cotransport, Vmax (51.79 +/- 4.34 pmol/mg protein per s) than those obtained from adult animals (Vmax = 34.28 +/- 9.17 pmol/mg per s), P < 0.05. Vmax values are represented as means plus or minus standard deviation. No differences in Km were observed. Our results indicate that age-related differences in renal inorganic sulfate reabsorption are due to a higher Vmax for sodium-sulfate cotransport in the younger animals, suggesting a higher density of sodium-sulfate cotransporters or an increased cotransport turnover rate in this age group.
Abnormal sulfate metabolism in vitamin D-deficient rats.
Fernandes I, Hampson G, Cahours X, Morin P, Coureau C, Couette S J Clin Invest. 1997; 100(9):2196-203.
PMID: 9410896 PMC: 508414. DOI: 10.1172/JCI119756.