» Articles » PMID: 14766935

Mitochondrial Modulation of Ca2+ Sparks and Transient KCa Currents in Smooth Muscle Cells of Rat Cerebral Arteries

Overview
Journal J Physiol
Specialty Physiology
Date 2004 Feb 10
PMID 14766935
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondria sequester and release calcium (Ca(2+)) and regulate intracellular Ca(2+) concentration ([Ca(2+)](i)) in eukaryotic cells. However, the regulation of different Ca(2+) signalling modalities by mitochondria in smooth muscle cells is poorly understood. Here, we investigated the regulation of Ca(2+) sparks, Ca(2+) waves and global [Ca(2+)](i) by mitochondria in cerebral artery smooth muscle cells. CCCP (a protonophore; 1 microm) and rotenone (an electron transport chain complex I inhibitor; 10 microm) depolarized mitochondria, reduced Ca(2+) spark and wave frequency, and elevated global [Ca(2+)](i) in smooth muscle cells of intact arteries. In voltage-clamped (-40 mV) cells, mitochondrial depolarization elevated global [Ca(2+)](i), reduced Ca(2+) spark amplitude, spatial spread and the effective coupling of sparks to large-conductance Ca(2+)-activated potassium (K(Ca)) channels, and decreased transient K(Ca) current frequency and amplitude. Inhibition of Ca(2+) sparks and transient K(Ca) currents by mitochondrial depolarization could not be explained by a decrease in intracellular ATP or a reduction in sarcoplasmic reticulum Ca(2+) load, and occurred in the presence of diltiazem, a voltage-dependent Ca(2+) channel blocker. Ru360 (10 microm), a mitochondrial Ca(2+) uptake blocker, and lonidamine (100 microm), a permeability transition pore (PTP) opener, inhibited transient K(Ca) currents similarly to mitochondrial depolarization. In contrast, CGP37157 (10 microm), a mitochondrial Na(+)-Ca(2+) exchange blocker, activated these events. The PTP blockers bongkrekic acid and cyclosporin A both reduced inhibition of transient K(Ca) currents by mitochondrial depolarization. These results indicate that mitochondrial depolarization leads to a voltage-independent elevation in global [Ca(2+)](i) and Ca(2+) spark and transient K(Ca) current inhibition. Data also suggest that mitochondrial depolarization inhibits Ca(2+) sparks and transient K(Ca) currents via PTP opening and a decrease in intramitochondrial [Ca(2+)].

Citing Articles

Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling.

Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y Nat Neurosci. 2024; 27(2):232-248.

PMID: 38168932 PMC: 10849963. DOI: 10.1038/s41593-023-01515-0.


Effects of sevoflurane and its metabolite hexafluoroisopropanol on hypoxia/reoxygenation-induced injury and mitochondrial bioenergetics in murine cardiomyocytes.

Roth Zgraggen B, Urner M, Beck-Schimmer B, Schlapfer M BJA Open. 2023; 5:100116.

PMID: 37587996 PMC: 10430838. DOI: 10.1016/j.bjao.2022.100116.


Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies.

De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E Antioxidants (Basel). 2023; 12(2).

PMID: 36829912 PMC: 9952851. DOI: 10.3390/antiox12020353.


Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension.

Wang Y, Reyes-Garcia J, Di Mise A, Zheng Y J Gen Physiol. 2023; 155(3.

PMID: 36625865 PMC: 9836826. DOI: 10.1085/jgp.202213100.


Detrimental effects of transient cerebral ischemia on middle cerebral artery mitochondria in female rats.

Rutkai I, Merdzo I, Wunnava S, McNulty C, Chandra P, Katakam P Am J Physiol Heart Circ Physiol. 2022; 323(6):H1343-H1351.

PMID: 36367688 PMC: 9744641. DOI: 10.1152/ajpheart.00346.2022.


References
1.
GUNTER T, Buntinas L, Sparagna G, Eliseev R, Gunter K . Mitochondrial calcium transport: mechanisms and functions. Cell Calcium. 2000; 28(5-6):285-96. DOI: 10.1054/ceca.2000.0168. View

2.
Perez G, Bonev A, Nelson M . Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol. 2001; 281(6):C1769-75. DOI: 10.1152/ajpcell.2001.281.6.C1769. View

3.
OReilly C, Fogarty K, Drummond R, Tuft R, Walsh Jr J . Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J. 2003; 85(5):3350-7. PMC: 1303612. DOI: 10.1016/S0006-3495(03)74754-7. View

4.
Isaeva E, Shirokova N . Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol. 2003; 547(Pt 2):453-62. PMC: 2342647. DOI: 10.1113/jphysiol.2002.036129. View

5.
Monteith G, Blaustein M . Heterogeneity of mitochondrial matrix free ca2+: resolution of Ca2+ dynamics in individual mitochondria in situ. Am J Physiol. 1999; 276(5):C1193-204. DOI: 10.1152/ajpcell.1999.276.5.C1193. View