» Articles » PMID: 14762207

Recent Horizontal Intron Transfer to a Chloroplast Genome

Overview
Specialty Biochemistry
Date 2004 Feb 6
PMID 14762207
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Evidence is presented for the recent, horizontal transfer of a self-splicing, homing group II intron from a cyanobacteria to the chloroplast genome of Euglena myxocylindracea. The psbA gene of E.myxocylindracea was found to contain a single 2566 nt group II intron with a gene in domain 4 for a 575 amino acid maturase. The predicted secondary structure and tertiary interactions of the group II intron, as well as the derived maturase primary sequence, most closely resemble the homing intron of the cyanobacterium Calothrix and the rnl introns of Porphyra purpurea mitochondria, while being only distantly related to all other Euglena plastid introns and maturases. All main functional domains of the intron-encoded proteins of known homing introns are conserved, including reverse transcriptase domains 1-7, the zinc finger domain and domain X. The close relationship with cyanobacterial introns was confirmed by phylogenetic analysis. Both the full-length psbA intron and a Delta-maturase variant self-splice in vitro in two independent assays. The psbA intron is the first example of a self-splicing chloroplast group II intron from any organism. These results support the conclusion that the psbA intron is the result of a recent horizontal transfer into the E.myxocylindracea chloroplast genome from a cyanobacterial donor and should prompt a reconsideration of horizontal transfer mechanisms to account for the origin of other chloroplast genetic elements.

Citing Articles

Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases.

Zumkeller S, Knoop V BMC Ecol Evol. 2023; 23(1):5.

PMID: 36915058 PMC: 10012718. DOI: 10.1186/s12862-023-02108-y.


Evolutionary Dynamics and Lateral Gene Transfer in Raphidophyceae Plastid Genomes.

Kim J, Jo B, Park M, Yoo Y, Shin W, Archibald J Front Plant Sci. 2022; 13:896138.

PMID: 35769291 PMC: 9235467. DOI: 10.3389/fpls.2022.896138.


Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes.

van Beveren F, Eme L, Lopez-Garcia P, Ciobanu M, Moreira D Genome Biol Evol. 2022; 14(4).

PMID: 35289373 PMC: 8995046. DOI: 10.1093/gbe/evac037.


Group II intron and repeat-rich red algal mitochondrial genomes demonstrate the dynamic recent history of autocatalytic RNAs.

Kim D, Lee J, Cho C, Kim E, Bhattacharya D, Yoon H BMC Biol. 2022; 20(1):2.

PMID: 34996446 PMC: 8742464. DOI: 10.1186/s12915-021-01200-3.


Organellar Introns in Fungi, Algae, and Plants.

Mukhopadhyay J, Hausner G Cells. 2021; 10(8).

PMID: 34440770 PMC: 8393795. DOI: 10.3390/cells10082001.


References
1.
Lemieux C, Otis C, Turmel M . Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature. 2000; 403(6770):649-52. DOI: 10.1038/35001059. View

2.
Burger G, Gray M, Lang B . Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae. Plant Cell. 1999; 11(9):1675-94. PMC: 144311. DOI: 10.1105/tpc.11.9.1675. View

3.
Eickbush T . Molecular biology. Introns gain ground. Nature. 2000; 404(6781):940-1, 943. DOI: 10.1038/35010246. View

4.
Cousineau B, Lawrence S, Smith D, Belfort M . Retrotransposition of a bacterial group II intron. Nature. 2000; 404(6781):1018-21. DOI: 10.1038/35010029. View

5.
Costa M, Michel F, Westhof E . A three-dimensional perspective on exon binding by a group II self-splicing intron. EMBO J. 2000; 19(18):5007-18. PMC: 314214. DOI: 10.1093/emboj/19.18.5007. View