Wang L, Xie J, Zhang C, Zou J, Huang Z, Shang S
Nat Struct Mol Biol. 2025; .
PMID: 39890981
DOI: 10.1038/s41594-025-01484-x.
Costa M
Front Mol Biosci. 2022; 9:916157.
PMID: 35865004
PMC: 9294222.
DOI: 10.3389/fmolb.2022.916157.
Mukhopadhyay J, Hausner G
Cells. 2021; 10(8).
PMID: 34440770
PMC: 8393795.
DOI: 10.3390/cells10082001.
Christy T, Giannetti C, Houlihan G, Smola M, Rice G, Wang J
Biochemistry. 2021; 60(25):1971-1982.
PMID: 34121404
PMC: 8256721.
DOI: 10.1021/acs.biochem.1c00270.
Barthet M, Pierpont C, Tavernier E
Plant Direct. 2020; 4(3):e00208.
PMID: 32185246
PMC: 7068846.
DOI: 10.1002/pld3.208.
Retroelement origins of pre-mRNA splicing.
Haack D, Toor N
Wiley Interdiscip Rev RNA. 2020; 11(4):e1589.
PMID: 32045511
PMC: 7340585.
DOI: 10.1002/wrna.1589.
Branch site bulge conformations in domain 6 determine functional sugar puckers in group II intron splicing.
Plangger R, Juen M, Hoernes T, Nussbaumer F, Kremser J, Strebitzer E
Nucleic Acids Res. 2019; 47(21):11430-11440.
PMID: 31665419
PMC: 6868427.
DOI: 10.1093/nar/gkz965.
Cryo-EM Structures of a Group II Intron Reverse Splicing into DNA.
Haack D, Yan X, Zhang C, Hingey J, Lyumkis D, Baker T
Cell. 2019; 178(3):612-623.e12.
PMID: 31348888
PMC: 6662634.
DOI: 10.1016/j.cell.2019.06.035.
Structural basis for the second step of group II intron splicing.
Chan R, Peters J, Robart A, Wiryaman T, Rajashankar K, Toor N
Nat Commun. 2018; 9(1):4676.
PMID: 30410046
PMC: 6224600.
DOI: 10.1038/s41467-018-06678-0.
Domestication of self-splicing introns during eukaryogenesis: the rise of the complex spliceosomal machinery.
Vosseberg J, Snel B
Biol Direct. 2017; 12(1):30.
PMID: 29191215
PMC: 5709842.
DOI: 10.1186/s13062-017-0201-6.
Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron.
Monachello D, Michel F, Costa M
RNA. 2016; 22(3):443-55.
PMID: 26769855
PMC: 4748821.
DOI: 10.1261/rna.054643.115.
Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution.
Lambowitz A, Belfort M
Microbiol Spectr. 2015; 3(1):MDNA3-0050-2014.
PMID: 26104554
PMC: 4394904.
DOI: 10.1128/microbiolspec.MDNA3-0050-2014.
Evolution of group II introns.
Zimmerly S, Semper C
Mob DNA. 2015; 6:7.
PMID: 25960782
PMC: 4424553.
DOI: 10.1186/s13100-015-0037-5.
In vitro characterization of the splicing efficiency and fidelity of the RmInt1 group II intron as a means of controlling the dispersion of its host mobile element.
Chillon I, Molina-Sanchez M, Fedorova O, Garcia-Rodriguez F, Martinez-Abarca F, Toro N
RNA. 2014; 20(12):2000-10.
PMID: 25336586
PMC: 4238363.
DOI: 10.1261/rna.047407.114.
The role of Mg(II) in DNA cleavage site recognition in group II intron ribozymes: solution structure and metal ion binding sites of the RNA-DNA complex.
Skilandat M, Sigel R
J Biol Chem. 2014; 289(30):20650-63.
PMID: 24895129
PMC: 4110277.
DOI: 10.1074/jbc.M113.542381.
Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.
McNeil B, Zimmerly S
RNA. 2014; 20(6):855-66.
PMID: 24751650
PMC: 4024640.
DOI: 10.1261/rna.042440.113.
Use of the computer-retargeted group II intron RmInt1 of Sinorhizobium meliloti for gene targeting.
Garcia-Rodriguez F, Hernandez-Gutierrez T, Diaz-Prado V, Toro N
RNA Biol. 2014; 11(4):391-401.
PMID: 24646865
PMC: 4075523.
DOI: 10.4161/rna.28373.
Principles of ion recognition in RNA: insights from the group II intron structures.
Marcia M, Pyle A
RNA. 2014; 20(4):516-27.
PMID: 24570483
PMC: 3964913.
DOI: 10.1261/rna.043414.113.
NMR structure of the 5' splice site in the group IIB intron Sc.ai5γ--conformational requirements for exon-intron recognition.
Kruschel D, Skilandat M, Sigel R
RNA. 2014; 20(3):295-307.
PMID: 24448450
PMC: 3923125.
DOI: 10.1261/rna.041137.113.
Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis.
Enyeart P, Mohr G, Ellington A, Lambowitz A
Mob DNA. 2014; 5(1):2.
PMID: 24410776
PMC: 3898094.
DOI: 10.1186/1759-8753-5-2.