» Articles » PMID: 14747327

Inner Field Compensation As a Tool for the Characterization of Asymmetric Membranes and Peptide-membrane Interactions

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2004 Jan 30
PMID 14747327
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Symmetric and asymmetric planar lipid bilayers prepared according to the Montal-Mueller method are a powerful tool to characterize peptide-membrane interactions. Several electrical properties of lipid bilayers such as membrane current, membrane capacitance, and the inner membrane potential differences and their changes can be deduced. The time-resolved determination of peptide-induced changes in membrane capacitance and inner membrane potential difference are of high importance for the characterization of peptide-membrane interactions. Intercalation and accumulation of peptides lead to changes in membrane capacitance, and membrane interaction of charged peptides induces changes in the charge distribution within the membrane and with that to changes in the membrane potential profile. In this study, we establish time-resolved measurements of the capacitance minimization potential DeltaPsi on various asymmetric planar lipid bilayers using the inner field compensation method. The results are compared to the respective ones of inner membrane potential differences DeltaPhi determined from ion carrier transport measurements. Finally, the time courses of membrane capacitances and of DeltaPsi have been used to characterize the interaction of cathelicidins with reconstituted lipid matrices of various Gram-negative bacteria.

Citing Articles

Native Pig Neutrophil Products: Insights into Their Antimicrobial Activity.

Fernandez-De La Cruz E, Wessely-Szponder J, Vinas M, Vinuesa T, Merlos A, Jorba M Microorganisms. 2023; 11(8).

PMID: 37630679 PMC: 10459379. DOI: 10.3390/microorganisms11082119.


Influence of Membrane Asymmetry on OmpF Insertion, Orientation and Function.

Donoghue A, Winterhalter M, Gutsmann T Membranes (Basel). 2023; 13(5).

PMID: 37233578 PMC: 10222080. DOI: 10.3390/membranes13050517.


Liposome Deformation Induced by Membrane-Binding Peptides.

Izumi K, Saito C, Kawano R Micromachines (Basel). 2023; 14(2).

PMID: 36838073 PMC: 9967443. DOI: 10.3390/mi14020373.


Teaching an old dog new tricks: A lipid membrane-based electric immunosensor for real-time probing of the spike S protein subunit from SARS-CoV-2.

Asandei A, Mereuta L, Schiopu I, Park Y, Luchian T Proteomics. 2021; 22(5-6):e2100047.

PMID: 34586750 PMC: 8646443. DOI: 10.1002/pmic.202100047.


The Beauty of Asymmetric Membranes: Reconstitution of the Outer Membrane of Gram-Negative Bacteria.

Paulowski L, Donoghue A, Nehls C, Groth S, Koistinen M, Hagge S Front Cell Dev Biol. 2020; 8:586.

PMID: 32766244 PMC: 7381204. DOI: 10.3389/fcell.2020.00586.


References
1.
Boggs J, Rangaraj G . Phase transitions and fatty acid spin label behavior in interdigitated lipid phases induced by glycerol and polymyxin. Biochim Biophys Acta. 1985; 816(2):221-33. DOI: 10.1016/0005-2736(85)90489-4. View

2.
Lugtenberg B, van Alphen L . Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta. 1983; 737(1):51-115. DOI: 10.1016/0304-4157(83)90014-x. View

3.
Kubesch P, Boggs J, Luciano L, Maass G, Tummler B . Interaction of polymyxin B nonapeptide with anionic phospholipids. Biochemistry. 1987; 26(8):2139-49. DOI: 10.1021/bi00382a012. View

4.
Cevc G . Membrane electrostatics. Biochim Biophys Acta. 1990; 1031(3):311-82. DOI: 10.1016/0304-4157(90)90015-5. View

5.
Larrick J, Morgan J, Palings I, Hirata M, Yen M . Complementary DNA sequence of rabbit CAP18--a unique lipopolysaccharide binding protein. Biochem Biophys Res Commun. 1991; 179(1):170-5. DOI: 10.1016/0006-291x(91)91350-l. View