» Articles » PMID: 14645481

Molecular Basis for Ultraviolet Vision in Invertebrates

Overview
Journal J Neurosci
Specialty Neurology
Date 2003 Dec 4
PMID 14645481
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

Invertebrates are sensitive to a broad spectrum of light that ranges from UV to red. Color sensitivity in the UV plays an important role in foraging, navigation, and mate selection in both flying and terrestrial invertebrate animals. Here, we show that a single amino acid polymorphism is responsible for invertebrate UV vision. This residue (UV: lysine vs blue:asparagine or glutamate) corresponds to amino acid position glycine 90 (G90) in bovine rhodopsin, a site affected in autosomal dominant human congenital night blindness. Introduction of the positively charged lysine in invertebrates is likely to deprotonate the Schiff base chromophore and produce an UV visual pigment. This same position is responsible for regulating UV versus blue sensitivity in several bird species, suggesting that UV vision has arisen independently in invertebrate and vertebrate lineages by a similar molecular mechanism.

Citing Articles

Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in R7 photoreceptor cells.

Aldrich J, Vanderlinden L, Jacobsen T, Wood C, Saba L, Britt S bioRxiv. 2024; .

PMID: 39149333 PMC: 11326169. DOI: 10.1101/2024.08.05.606616.


Genome assembly of Genji firefly (Nipponoluciola cruciata) reveals novel luciferase-like luminescent proteins without peroxisome targeting signal.

Fukuta K, Kato D, Maeda J, Tsuruta A, Suzuki H, Nagano Y DNA Res. 2024; 31(2).

PMID: 38494174 PMC: 11090084. DOI: 10.1093/dnares/dsae006.


Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins.

Palecanda S, Madrid E, Porter M J Mol Evol. 2023; 91(6):806-818.

PMID: 37940679 DOI: 10.1007/s00239-023-10137-w.


Parallel Losses of Blue Opsin Correlate with Compensatory Neofunctionalization of UV-Opsin Gene Duplicates in Aphids and Planthoppers.

Friedrich M Insects. 2023; 14(9).

PMID: 37754742 PMC: 10531960. DOI: 10.3390/insects14090774.


Nematostella vectensis exemplifies the exceptional expansion and diversity of opsins in the eyeless Hexacorallia.

McCulloch K, Babonis L, Liu A, Daly C, Martindale M, Koenig K Evodevo. 2023; 14(1):14.

PMID: 37735470 PMC: 10512536. DOI: 10.1186/s13227-023-00218-8.


References
1.
Tovee M . Ultra-violet photoreceptors in the animal kingdom: their distribution and function. Trends Ecol Evol. 2011; 10(11):455-60. DOI: 10.1016/s0169-5347(00)89179-x. View

2.
Chou W, Hall K, Wilson D, Wideman C, Townson S, Chadwell L . Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron. 1996; 17(6):1101-15. DOI: 10.1016/s0896-6273(00)80243-3. View

3.
Janz J, Farrens D . Engineering a functional blue-wavelength-shifted rhodopsin mutant. Biochemistry. 2001; 40(24):7219-27. DOI: 10.1021/bi002937i. View

4.
Briscoe A, Chittka L . The evolution of color vision in insects. Annu Rev Entomol. 2000; 46:471-510. DOI: 10.1146/annurev.ento.46.1.471. View

5.
Nathans J . Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry. 1990; 29(41):9746-52. DOI: 10.1021/bi00493a034. View