» Articles » PMID: 32475117

Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2020 Jun 2
PMID 32475117
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

UV-absorbing rhodopsins are essential for UV vision and sensing in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins, which bind a protonated retinal Schiff base for light absorption, UV-absorbing rhodopsins bind an unprotonated retinal Schiff base. Thus far, the photoreaction dynamics and mechanisms of UV-absorbing rhodopsins have remained essentially unknown. Here, we report the complete excited- and ground-state dynamics of the UV form of histidine kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy, covering time scales from femtoseconds to milliseconds. We found that energy-level ordering is inverted with respect to visible-absorbing rhodopsins, with an optically forbidden low-lying S excited state that has Ag symmetry and a higher-lying UV-absorbing S state of Bu symmetry. UV-photoexcitation to the S state elicits a unique dual-isomerization reaction: first, C13═C14 - isomerization occurs during S-S evolution in <100 fs. This very fast reaction features the remarkable property that the newly formed isomer appears in the excited state rather than in the ground state. Second, C15═N16 - isomerization occurs on the S-S evolution to the ground state in 4.8 ps. We detected two ground-state unprotonated retinal photoproducts, 13-/15- (all-) and 13-/15-, after relaxation to the ground state. These isomers become protonated in 58 μs and 3.2 ms, respectively, resulting in formation of the blue-absorbing form of HKR1. Our results constitute a benchmark of UV-induced photochemistry of animal and microbial rhodopsins.

Citing Articles

Mapping photoisomerization dynamics on a three-state model potential energy surface in bacteriorhodopsin using femtosecond stimulated Raman spectroscopy.

Wang Z, Chen Y, Jiang J, Zhao X, Liu W Chem Sci. 2025; 16(8):3713-3719.

PMID: 39886431 PMC: 11775652. DOI: 10.1039/d4sc07540d.


Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction.

Kaziannis S, Broser M, van Stokkum I, Dostal J, Busse W, Munhoven A Proc Natl Acad Sci U S A. 2024; 121(12):e2318996121.

PMID: 38478688 PMC: 10962995. DOI: 10.1073/pnas.2318996121.


Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct.

Malakar P, Gholami S, Aarabi M, Rivalta I, Sheves M, Garavelli M Nat Commun. 2024; 15(1):2136.

PMID: 38459010 PMC: 10923925. DOI: 10.1038/s41467-024-46061-w.


Mastering Femtosecond Stimulated Raman Spectroscopy: A Practical Guide.

Lynch P, Das A, Alam S, Rich C, Frontiera R ACS Phys Chem Au. 2024; 4(1):1-18.

PMID: 38283786 PMC: 10811773. DOI: 10.1021/acsphyschemau.3c00031.


Reaction Dynamics in the Chrimson Channelrhodopsin: Observation of Product-State Evolution and Slow Diffusive Protein Motions.

van Stokkum I, Hontani Y, Vierock J, Krause B, Hegemann P, Kennis J J Phys Chem Lett. 2023; 14(6):1485-1493.

PMID: 36745035 PMC: 9940203. DOI: 10.1021/acs.jpclett.2c03110.


References
1.
Hontani Y, Marazzi M, Stehfest K, Mathes T, van Stokkum I, Elstner M . Reaction dynamics of the chimeric channelrhodopsin C1C2. Sci Rep. 2017; 7(1):7217. PMC: 5543136. DOI: 10.1038/s41598-017-07363-w. View

2.
Eckert C, Kaur J, Glaubitz C, Wachtveitl J . Ultrafast Photoinduced Deactivation Dynamics of Proteorhodopsin. J Phys Chem Lett. 2017; 8(2):512-517. DOI: 10.1021/acs.jpclett.6b02975. View

3.
Kennis J, Groot M . Ultrafast spectroscopy of biological photoreceptors. Curr Opin Struct Biol. 2007; 17(5):623-30. DOI: 10.1016/j.sbi.2007.09.006. View

4.
Gozem S, Luk H, Schapiro I, Olivucci M . Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem Rev. 2017; 117(22):13502-13565. DOI: 10.1021/acs.chemrev.7b00177. View

5.
McCamant D, Kukura P, Mathies R . Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J Phys Chem B. 2006; 109(20):10449-57. PMC: 1544036. DOI: 10.1021/jp050095x. View