» Articles » PMID: 14577841

Telomere and Ribosomal DNA Repeats Are Chromosomal Targets of the Bloom Syndrome DNA Helicase

Overview
Journal BMC Cell Biol
Publisher Biomed Central
Specialty Cell Biology
Date 2003 Oct 28
PMID 14577841
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci.

Results: Chromatin immunoprecipitation of BLM complexes recovered telomere and ribosomal DNA repeats. The N-terminus of BLM, required for NB localization, is the same as the telomere association domain of BLM. The C-terminus is required for ribosomal DNA localization. BLM localizes primarily to the non-transcribed spacer region of the ribosomal DNA repeat where replication forks initiate. Bloom syndrome cells expressing the deletion alleles lacking the ribosomal DNA and telomere association domains have altered cell cycle populations with increased S or G2/M cells relative to normal.

Conclusion: These results identify telomere and ribosomal DNA repeated sequence elements as chromosomal targets for the BLM DNA helicase during the S/G2 phase of the cell cycle. BLM is localized in nuclear bodies when it associates with telomeric repeats in both telomerase positive and negative cells. The BLM DNA helicase participates in genomic stability at ribosomal DNA repeats and telomeres.

Citing Articles

Multiple functions of the ALT favorite helicase, BLM.

Chang S, Tan J, Bao R, Zhang Y, Tong J, Jia T Cell Biosci. 2025; 15(1):31.

PMID: 40025590 PMC: 11871798. DOI: 10.1186/s13578-025-01372-3.


TRF2-RAP1 represses RAD51-dependent homology-directed telomere repair by promoting BLM-mediated D-loop unwinding and inhibiting BLM-DNA2-dependent 5'-end resection.

Liang F, Rai R, Sodeinde T, Chang S Nucleic Acids Res. 2024; 52(16):9695-9709.

PMID: 39082275 PMC: 11381343. DOI: 10.1093/nar/gkae642.


Mitotic Antipairing of Homologous Chromosomes.

Hua L, Casas C, Mikawa T Results Probl Cell Differ. 2022; 70:191-220.

PMID: 36348108 PMC: 9731508. DOI: 10.1007/978-3-031-06573-6_6.


POLQ suppresses genome instability and alterations in DNA repeat tract lengths.

Liddiard K, Aston-Evans A, Cleal K, Hendrickson E, Baird D NAR Cancer. 2022; 4(3):zcac020.

PMID: 35774233 PMC: 9241439. DOI: 10.1093/narcan/zcac020.


Under the magnifying glass: The ups and downs of rDNA copy number.

Kindelay S, Maggert K Semin Cell Dev Biol. 2022; 136:38-48.

PMID: 35595601 PMC: 9976841. DOI: 10.1016/j.semcdb.2022.05.006.


References
1.
Haber J . DNA recombination: the replication connection. Trends Biochem Sci. 1999; 24(7):271-5. DOI: 10.1016/s0968-0004(99)01413-9. View

2.
Sun H, Karow J, Hickson I, Maizels N . The Bloom's syndrome helicase unwinds G4 DNA. J Biol Chem. 1998; 273(42):27587-92. DOI: 10.1074/jbc.273.42.27587. View

3.
Maul G, Negorev D, Bell P, Ishov A . Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol. 2000; 129(2-3):278-87. DOI: 10.1006/jsbi.2000.4239. View

4.
Yankiwski V, Marciniak R, Guarente L, Neff N . Nuclear structure in normal and Bloom syndrome cells. Proc Natl Acad Sci U S A. 2000; 97(10):5214-9. PMC: 25808. DOI: 10.1073/pnas.090525897. View

5.
STUBBLEFIELD E . Analysis of the replication pattern of Chinese hamster chromosomes using 5-bromodeoxyuridine suppression of 33258 Hoechst fluorescence. Chromosoma. 1975; 53(3):209-21. DOI: 10.1007/BF00329172. View