» Articles » PMID: 14561882

A Template-proximal RNA Paired Element Contributes to Saccharomyces Cerevisiae Telomerase Activity

Overview
Journal RNA
Specialty Molecular Biology
Date 2003 Oct 17
PMID 14561882
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

The ribonucleoprotein complex telomerase is critical for replenishing chromosome-end sequence during eukaryotic DNA replication. The template for the addition of telomeric repeats is provided by the RNA component of telomerase. However, in budding yeast, little is known about the structure and function of most of the remainder of the telomerase RNA. Here, we report the identification of a paired element located immediately 5' of the template region in the Saccharomyces cerevisiae telomerase RNA. Mutations disrupting or replacing the helical element showed that this structure, but not its exact nucleotide sequence, is important for telomerase function in vivo and in vitro. Biochemical characterization of a paired element mutant showed that the mutant generated longer products and incorporated noncognate nucleotides. Sequencing of in vivo synthesized telomeres from this mutant showed that DNA synthesis proceeded beyond the normal template. Thus, the S. cerevisiae element resembles a similar element found in Kluyveromyces budding yeasts with respect to a function in template boundary specification. In addition, the in vitro activity of the paired element mutant indicates that the RNA element has additional functions in enzyme processivity and in directing template usage by telomerase.

Citing Articles

Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions.

Zappulla D Molecules. 2020; 25(12).

PMID: 32545864 PMC: 7356895. DOI: 10.3390/molecules25122750.


Repositioning the Sm-Binding Site in Telomerase RNA Reveals RNP Organizational Flexibility and Sm-Directed 3'-End Formation.

Hass E, Zappulla D Noncoding RNA. 2020; 6(1).

PMID: 32121425 PMC: 7151599. DOI: 10.3390/ncrna6010009.


A single nucleotide incorporation step limits human telomerase repeat addition activity.

Chen Y, Podlevsky J, Logeswaran D, Chen J EMBO J. 2018; 37(6).

PMID: 29440226 PMC: 5852417. DOI: 10.15252/embj.201797953.


New perspectives on telomerase RNA structure and function.

Musgrove C, Jansson L, Stone M Wiley Interdiscip Rev RNA. 2017; 9(2).

PMID: 29124890 PMC: 5815921. DOI: 10.1002/wrna.1456.


Evolutionary perspectives of telomerase RNA structure and function.

Podlevsky J, Chen J RNA Biol. 2016; 13(8):720-32.

PMID: 27359343 PMC: 4993307. DOI: 10.1080/15476286.2016.1205768.


References
1.
Evans S, Lundblad V . The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. Genetics. 2002; 162(3):1101-15. PMC: 1462332. DOI: 10.1093/genetics/162.3.1101. View

2.
Kelleher C, Teixeira M, Forstemann K, Lingner J . Telomerase: biochemical considerations for enzyme and substrate. Trends Biochem Sci. 2002; 27(11):572-9. DOI: 10.1016/s0968-0004(02)02206-5. View

3.
Tzfati Y, Knight Z, Roy J, Blackburn E . A novel pseudoknot element is essential for the action of a yeast telomerase. Genes Dev. 2003; 17(14):1779-88. PMC: 196185. DOI: 10.1101/gad.1099403. View

4.
Greider C, Blackburn E . The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987; 51(6):887-98. DOI: 10.1016/0092-8674(87)90576-9. View

5.
Romero D, Blackburn E . A conserved secondary structure for telomerase RNA. Cell. 1991; 67(2):343-53. DOI: 10.1016/0092-8674(91)90186-3. View