Dalia T, Dalia A
J Bacteriol. 2024; 207(1):e0041924.
PMID: 39670763
PMC: 11784430.
DOI: 10.1128/jb.00419-24.
Zuke J, Burton B
Microbiol Mol Biol Rev. 2024; 88(1):e0012523.
PMID: 38466096
PMC: 10966944.
DOI: 10.1128/mmbr.00125-23.
Zuke J, Erickson R, Hummels K, Burton B
J Bacteriol. 2023; 205(9):e0015623.
PMID: 37695859
PMC: 10521363.
DOI: 10.1128/jb.00156-23.
Zuke J, Erickson R, Hummels K, Burton B
bioRxiv. 2023; .
PMID: 37292776
PMC: 10246001.
DOI: 10.1101/2023.05.26.542325.
Kurushima J, Campo N, van Raaphorst R, Cerckel G, Polard P, Veening J
Elife. 2020; 9.
PMID: 32965219
PMC: 7567608.
DOI: 10.7554/eLife.58771.
The mismatch repair system (mutS and mutL) in Acinetobacter baylyi ADP1.
Zhou H, Zhang L, Xu Q, Zhang L, Yu Y, Hua X
BMC Microbiol. 2020; 20(1):40.
PMID: 32111158
PMC: 7048072.
DOI: 10.1186/s12866-020-01729-3.
The Best of All Worlds: Conjunctivitis through the Lens of Community Ecology and Microbial Biogeography.
Ung L, Bispo P, Bryan N, Andre C, Chodosh J, Gilmore M
Microorganisms. 2019; 8(1).
PMID: 31881682
PMC: 7022640.
DOI: 10.3390/microorganisms8010046.
Spatiotemporal Analysis of DNA Integration during Natural Transformation Reveals a Mode of Nongenetic Inheritance in Bacteria.
Dalia A, Dalia T
Cell. 2019; 179(7):1499-1511.e10.
PMID: 31835029
PMC: 6913884.
DOI: 10.1016/j.cell.2019.11.021.
Femtoliter droplet confinement of Streptococcus pneumoniae: bacterial genetic transformation by cell-cell interaction in droplets.
Lam T, Brennan M, Morrison D, Eddington D
Lab Chip. 2019; 19(4):682-692.
PMID: 30657515
PMC: 6487891.
DOI: 10.1039/c8lc01367e.
Resistance and tolerance to foreign elements by prokaryotic immune systems - curating the genome.
Goldberg G, Marraffini L
Nat Rev Immunol. 2015; 15(11):717-24.
PMID: 26494050
PMC: 4933499.
DOI: 10.1038/nri3910.
Competence-independent activity of pneumococcal EndA [corrected] mediates degradation of extracellular dna and nets and is important for virulence.
Zhu L, Kuang Z, Wilson B, Lau G
PLoS One. 2013; 8(7):e70363.
PMID: 23936195
PMC: 3729463.
DOI: 10.1371/journal.pone.0070363.
A high-resolution view of genome-wide pneumococcal transformation.
Croucher N, Harris S, Barquist L, Parkhill J, Bentley S
PLoS Pathog. 2012; 8(6):e1002745.
PMID: 22719250
PMC: 3375284.
DOI: 10.1371/journal.ppat.1002745.
Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae.
Midon M, Schafer P, Pingoud A, Ghosh M, Moon A, Cuneo M
Nucleic Acids Res. 2010; 39(2):623-34.
PMID: 20846957
PMC: 3025545.
DOI: 10.1093/nar/gkq802.
Differential effects of temperature on natural transformation to erythromycin and nalidixic acid resistance in Campylobacter coli.
Kim J, Kim J, Kathariou S
Appl Environ Microbiol. 2008; 74(19):6121-5.
PMID: 18708520
PMC: 2565985.
DOI: 10.1128/AEM.01075-08.
Manifestation of linear organization in molecules of pneumococcal transforming DNA.
Gabor M, HOTCHKISS R
Proc Natl Acad Sci U S A. 1966; 56(5):1441-8.
PMID: 16591391
PMC: 219994.
DOI: 10.1073/pnas.56.5.1441.
Genetic Recombination of Transforming Deoxyribonucleic Acid Molecules with the Recipient Genome and Among Themselves in Protoplasts of Bacillus subtilis.
Hirokawa H, Ikeda Y
J Bacteriol. 1966; 92(2):455-63.
PMID: 16562135
PMC: 276263.
DOI: 10.1128/jb.92.2.455-463.1966.
SOME FACTORS STIMULATING AND INHIBITING PANCREATIC DEOXYRIBONUCLEASE.
KOPECKA H, Kohoutova M
Folia Microbiol (Praha). 1965; 10:176-8.
PMID: 14344775
DOI: 10.1007/BF02881009.
MOLECULAR MECHANISM OF GENETIC RECOMBINATION IN BACTERIAL TRANSFORMATION.
BRESLER S, Kreneva R, KUSHEV V, Mosevitskii M
Z Vererbungsl. 1964; 95:288-97.
PMID: 14339939
DOI: 10.1007/BF00897013.
UNSTABLE GENETIC TRANSFORMATION IN BACILLUS SUBTILIS AND THE MODE OF INHERITANCE IN UNSTABLE CLONES.
Iyer V
J Bacteriol. 1965; 90:495-503.
PMID: 14329465
PMC: 315670.
DOI: 10.1128/jb.90.2.495-503.1965.
PROPERTIES OF NEWLY INTRODUCED TRANSFORMING DEOXYRIBONUCLEIC ACID IN BACILLUS SUBTILIS.
Venema G, Pritchard R, VENEMA-SCHROEDER T
J Bacteriol. 1965; 90:343-6.
PMID: 14329445
PMC: 315648.
DOI: 10.1128/jb.90.2.343-346.1965.