Rassbach J, Hilsberg N, Haensch V, Dorner S, Gressler J, Sonnabend R
Fungal Biol Biotechnol. 2023; 10(1):19.
PMID: 37670394
PMC: 10478498.
DOI: 10.1186/s40694-023-00166-x.
Sun X, Lin Y, Huang Q, Yuan Q, Yan Y
Appl Environ Microbiol. 2013; 79(13):4024-30.
PMID: 23603682
PMC: 3697559.
DOI: 10.1128/AEM.00859-13.
Mars A, Prins G, Wietzes P, de Koning W, Janssen D
Appl Environ Microbiol. 2005; 64(1):208-15.
PMID: 16349481
PMC: 124695.
DOI: 10.1128/AEM.64.1.208-215.1998.
Bartels I, Knackmuss H, Reineke W
Appl Environ Microbiol. 1984; 47(3):500-5.
PMID: 16346490
PMC: 239710.
DOI: 10.1128/aem.47.3.500-505.1984.
Hughes D
Biochem J. 1965; 96:181-8.
PMID: 14343128
PMC: 1206919.
DOI: 10.1042/bj0960181.
Characterization and evolution of anthranilate 1,2-dioxygenase from Acinetobacter sp. strain ADP1.
Eby D, Beharry Z, Coulter E, Kurtz Jr D, Neidle E
J Bacteriol. 2000; 183(1):109-18.
PMID: 11114907
PMC: 94856.
DOI: 10.1128/JB.183-1.109-118.2001.
Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol.
Klecka G, Gibson D
Appl Environ Microbiol. 1981; 41(5):1159-65.
PMID: 7259155
PMC: 243883.
DOI: 10.1128/aem.41.5.1159-1165.1981.
Utilization of phthalate esters by micrococci.
Eaton R, Ribbons D
Arch Microbiol. 1982; 132(2):185-8.
PMID: 7125802
DOI: 10.1007/BF00508728.
Anthranilate hydroxylase from Aspergillus niger: new type of NADPH-linked nonheme iron monooxygenase.
Subramanian V, Vaidyanathan C
J Bacteriol. 1984; 160(2):651-5.
PMID: 6501219
PMC: 214784.
DOI: 10.1128/jb.160.2.651-655.1984.
Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type.
Hegeman G
J Bacteriol. 1966; 91(3):1140-54.
PMID: 5929747
PMC: 316007.
DOI: 10.1128/jb.91.3.1140-1154.1966.
The metabolism of beta-phenylpropionic acid by an Achromobacter.
DAGLEY S, Chapman P, Gibson D
Biochem J. 1965; 97(3):643-50.
PMID: 5881653
PMC: 1264740.
DOI: 10.1042/bj0970643.
Formation of 2-hydroxy-6-oxo-2, trans-4, trans-heptad-ienoic acid from 3-methylcatechol by a Pseudomonas.
Catelani D, Fiecchi A, Galli E
Experientia. 1968; 24(2):113.
PMID: 5643787
DOI: 10.1007/BF02146927.
Regulation of the pathway for the degradation of anthranilate in Aspergillus niger.
Rao P, Sreeleela N, Premakumar R, Vaidyanathan C
J Bacteriol. 1971; 107(1):100-5.
PMID: 5563863
PMC: 246891.
DOI: 10.1128/jb.107.1.100-105.1971.
Cometabolism of m-chlorobenzoate by an Arthrobacter.
Horvath R, Alexander M
Appl Microbiol. 1970; 20(2):254-8.
PMID: 5480101
PMC: 376911.
DOI: 10.1128/am.20.2.254-258.1970.
The oxidative degradation of benzoate and catechol by Klebsiella aerogenes (Aerobacter aerogenes).
Grant D
Antonie Van Leeuwenhoek. 1970; 36(1):161-77.
PMID: 4987140
DOI: 10.1007/BF02069018.
Chlorophenol and chlorobenzoic acid co-metabolism by different genera of soil bacteria.
Spokes J, Walker N
Arch Mikrobiol. 1974; 96(2):125-34.
PMID: 4836257
DOI: 10.1007/BF00590169.
Transformation of o-toluate in Pseudomonas putida isolate 1065 and Rhizopus japonicus ATCC 24794.
Engelhardt G, Wallnofer P
Arch Mikrobiol. 1973; 93(3):229-37.
PMID: 4775413
DOI: 10.1007/BF00412022.
Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents.
Crawford R, McCOY E, Harkin J, Kirk T, Obst J
Appl Microbiol. 1973; 26(2):176-84.
PMID: 4743871
PMC: 379747.
DOI: 10.1128/am.26.2.176-184.1973.
Methoxyhydroquinone, an intermediate of vanillate catabolism by Polyporus dichrous.
Kirk T, Lorenz L
Appl Microbiol. 1973; 26(2):173-5.
PMID: 4743870
PMC: 379746.
DOI: 10.1128/am.26.2.173-175.1973.
Microbial co-metabolism and the degradation of organic compounds in nature.
Horvath R
Bacteriol Rev. 1972; 36(2):146-55.
PMID: 4557166
PMC: 408321.
DOI: 10.1128/br.36.2.146-155.1972.