» Articles » PMID: 143919

Fructose Metabolism in Four Pseudomonas Species

Overview
Journal Arch Microbiol
Specialty Microbiology
Date 1977 Sep 28
PMID 143919
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

1. ATP-Dependent phosphorylation of fructose could not be detected in extracts of fructose-grown cells of Pseudomonas extorquens strain 16, Pseudomonas 3A2, Pseudomonas acidovorans and Pseudomonas fluorescens. Instead, phosphorylation of fructose to fructose-1-phosphate was found to occur when cell-free extracts were incubated with fructose and phosphoenolpyruvate. Such an activity could not be detected in cell-free extracts of succinate-grown cells. 2. High levels of 1-phosphofructokinase were found in extracts of the above organisms when growth on fructose. 3. Mutants of Pseudomonas extorquens strain 16 lacking 1-phosphofructokinase were unable to grow on fructose. Revertants to growth on fructose had regained the capacity to synthesize this enzyme, indicating its necessary involvement in fructose metabolism. 4. A survey has been carried out of enzymes involved in carbohydrate metabolism in the species listed above.

Citing Articles

Vibrio cholerae FruR facilitates binding of RNA polymerase to the fru promoter in the presence of fructose 1-phosphate.

Yoon C, Kang D, Kim M, Seok Y Nucleic Acids Res. 2021; 49(3):1397-1410.

PMID: 33476373 PMC: 7897506. DOI: 10.1093/nar/gkab013.


A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization.

Wilkes R, Mendonca C, Aristilde L Appl Environ Microbiol. 2018; 85(1).

PMID: 30366991 PMC: 6293094. DOI: 10.1128/AEM.02084-18.


The functional structure of central carbon metabolism in Pseudomonas putida KT2440.

Sudarsan S, Dethlefsen S, Blank L, Siemann-Herzberg M, Schmid A Appl Environ Microbiol. 2014; 80(17):5292-303.

PMID: 24951791 PMC: 4136102. DOI: 10.1128/AEM.01643-14.


Modeling and analysis of flux distributions in the two branches of the phosphotransferase system in Pseudomonas putida.

Kremling A, Pfluger-Grau K, Chavarria M, Puchalka J, Martins Dos Santos V, de Lorenzo V BMC Syst Biol. 2012; 6:149.

PMID: 23216700 PMC: 3562155. DOI: 10.1186/1752-0509-6-149.


Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism.

Chavarria M, Kleijn R, Sauer U, Pfluger-Grau K, de Lorenzo V mBio. 2012; 3(2).

PMID: 22434849 PMC: 3312210. DOI: 10.1128/mBio.00028-12.


References
1.
Clark B, HOLMS W . Control of the sequential utilization of glucose and fructose by Escherichia coli. J Gen Microbiol. 1976; 96(2):191-201. DOI: 10.1099/00221287-95-2-191. View

2.
Harder W, Quayle J . The biosynthesis of serine and glycine in Pseudomonas AM1 with special reference to growth on carbon sources other than C1 compounds. Biochem J. 1971; 121(5):753-62. PMC: 1176663. DOI: 10.1042/bj1210753. View

3.
Parks Jr R, Ben-Gershom E, LARDY H . Liver fructokinase. J Biol Chem. 1957; 227(1):231-42. View

4.
Colby J, ZATMAN L . Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem J. 1973; 132(1):101-12. PMC: 1177564. DOI: 10.1042/bj1320101. View

5.
Sawyer M, Baumann P, Baumann L, Berman S, CANOVAS J, BERMAN R . Pathways of D-fructose catabolism in species of Pseudomonas. Arch Microbiol. 1977; 112(1):49-55. DOI: 10.1007/BF00446653. View