Zhang Y, Wang B, Wang G, Zheng Z, Chen Y, Li O
Arch Microbiol. 2024; 206(5):239.
PMID: 38689148
DOI: 10.1007/s00203-024-03858-z.
Lopez-Gonzalez D, Bruno L, Diaz-Tielas C, Lupini A, Aci M, Talarico E
Plants (Basel). 2023; 12(1).
PMID: 36616318
PMC: 9824805.
DOI: 10.3390/plants12010189.
Ghimire N, Kim B, Lee C, Oh T
BMC Genomics. 2022; 23(1):375.
PMID: 35585492
PMC: 9115942.
DOI: 10.1186/s12864-022-08589-3.
Scepanovic M, Koscak L, Sostarcic V, Pismarovic L, Milanovic-Litre A, Kljak K
Biology (Basel). 2022; 11(4).
PMID: 35453682
PMC: 9031199.
DOI: 10.3390/biology11040482.
Shi R, Wang S, Xiong B, Gu H, Wang H, Ji C
Microorganisms. 2022; 10(2).
PMID: 35208730
PMC: 8879206.
DOI: 10.3390/microorganisms10020275.
Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids.
Bai Y, Wang G, Cheng Y, Shi P, Yang C, Yang H
Sci Rep. 2019; 9(1):12499.
PMID: 31467316
PMC: 6715655.
DOI: 10.1038/s41598-019-48611-5.
The Activity of the Antioxidant Defense System of the Weed Species Senna obtusifolia L. and its Resistance to Allelochemical Stress.
Coelho E, Barbosa M, Mito M, Mantovanelli G, Oliveira Jr R, Ishii-Iwamoto E
J Chem Ecol. 2017; 43(7):725-738.
PMID: 28711978
DOI: 10.1007/s10886-017-0865-5.
Root biomass and exudates link plant diversity with soil bacterial and fungal biomass.
Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur M
Sci Rep. 2017; 7:44641.
PMID: 28374800
PMC: 5379681.
DOI: 10.1038/srep44641.
The uptake of simple phenols by barley roots.
Glass A, Bohm B
Planta. 2014; 100(2):93-105.
PMID: 24488134
DOI: 10.1007/BF00385211.
Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber.
Blum U, Dalton B, Rawlings J
J Chem Ecol. 2013; 10(8):1169-91.
PMID: 24318904
DOI: 10.1007/BF00988547.
Interactions of temperature and ferulic acid stress on grain sorghum and soybeans.
Einhellig F, Eckrich P
J Chem Ecol. 2013; 10(1):161-70.
PMID: 24318238
DOI: 10.1007/BF00987653.
Effects of ferulic andp-coumaric acids in nutrient culture of cucumber leaf expansion as influenced by pH.
Blum U, Dalton B, Shann J
J Chem Ecol. 2013; 11(11):1567-82.
PMID: 24311249
DOI: 10.1007/BF01012202.
Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture.
Blum U, Dalton B, Shann J
J Chem Ecol. 2013; 11(5):619-41.
PMID: 24310127
DOI: 10.1007/BF00988572.
Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient culture.
Blum U, Dalton B
J Chem Ecol. 2013; 11(3):279-301.
PMID: 24309960
DOI: 10.1007/BF01411415.
Effects of mixtures of phenolic acids on leaf area expansion of cucumber seedlings grown in different pH portsmouth A1 soil materials.
Blum U, Gerig T, Weed S
J Chem Ecol. 2013; 15(10):2413-23.
PMID: 24271538
DOI: 10.1007/BF01020372.
Allelopathic and autotoxic effects ofAnastatica hierochuntica L.
Hegazy A, Mansour K, Abdel-Hady N
J Chem Ecol. 2013; 16(7):2183-93.
PMID: 24264085
DOI: 10.1007/BF01026929.
Effects of soil nitrogen level on ferulic acid inhibition of cucumber leaf expansion.
Klein K, Blum U
J Chem Ecol. 2013; 16(4):1371-83.
PMID: 24263734
DOI: 10.1007/BF01021033.
Inhibition of cucumber leaf expansion by ferulic acid in split-root experiments.
Klein K, Blum U
J Chem Ecol. 2013; 16(2):455-63.
PMID: 24263502
DOI: 10.1007/BF01021777.
Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B1 soil materials.
Gerig T, Blum U
J Chem Ecol. 2013; 17(1):29-40.
PMID: 24258432
DOI: 10.1007/BF00994420.
Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf.
Mersie W, Singh M
J Chem Ecol. 2013; 19(7):1293-301.
PMID: 24249162
DOI: 10.1007/BF00984876.