» Articles » PMID: 1406675

Effects of Histone Acetylation on Chromatin Topology in Vivo

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 1992 Nov 1
PMID 1406675
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Recently a model for eukaryotic transcriptional activation has been proposed in which histone hyperacetylation causes release of nucleosomal supercoils, and this unconstrained tension in turn stimulates transcription (V. G. Norton, B. S. Imai, P. Yau, and E. M. Bradbury, Cell 57:449-457, 1989; V. G. Norton, K. W. Marvin, P. Yau, and E. M. Bradbury, J. Biol. Chem. 265:19848-19852, 1990). These studies analyzed the effect of histone hyperacetylation on the change in topological linking number which occurs during nucleosome assembly in vitro. We have tested this model by determining the effect of histone hyperacetylation on the linking number change which occurs during assembly in vivo. We find that butyrate treatment of cells infected with simian virus 40 results in hyperacetylation of the histones of the extracted viral minichromosome as expected. However, the change in constrained supercoils of the minichromosome DNA is minimal, a result which is inconsistent with the proposed model. These results indicate that the proposed mechanism of transcriptional activation is unlikely to take place in the cell.

Citing Articles

Supercoiling in DNA and chromatin.

Gilbert N, Allan J Curr Opin Genet Dev. 2014; 25:15-21.

PMID: 24584092 PMC: 4042020. DOI: 10.1016/j.gde.2013.10.013.


Epigenetics of the depressed brain: role of histone acetylation and methylation.

Sun H, Kennedy P, Nestler E Neuropsychopharmacology. 2012; 38(1):124-37.

PMID: 22692567 PMC: 3521990. DOI: 10.1038/npp.2012.73.


Role of histone N-terminal tails and their acetylation in nucleosome dynamics.

Morales V, Richard-Foy H Mol Cell Biol. 2000; 20(19):7230-7.

PMID: 10982840 PMC: 86277. DOI: 10.1128/MCB.20.19.7230-7237.2000.


Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells through histone acetylation.

Fusunyan R, Quinn J, Fujimoto M, Macdermott R, Sanderson I Mol Med. 1999; 5(9):631-40.

PMID: 10551904 PMC: 2230463.


Chromatin fiber structure: morphology, molecular determinants, structural transitions.

Zlatanova J, Leuba S, van Holde K Biophys J. 1998; 74(5):2554-66.

PMID: 9591681 PMC: 1299597. DOI: 10.1016/S0006-3495(98)77963-9.


References
1.
Weintraub H . A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin. Cell. 1983; 32(4):1191-203. DOI: 10.1016/0092-8674(83)90302-1. View

2.
Panyim S, Chalkley R . High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969; 130(1):337-46. DOI: 10.1016/0003-9861(69)90042-3. View

3.
LABHART P, Koller T . Electron microscope specimen preparation of rat liver chromatin by a modified Miller spreading technique. Eur J Cell Biol. 1981; 24(2):309-16. View

4.
Depew D, Wang J . Conformational fluctuations of DNA helix. Proc Natl Acad Sci U S A. 1975; 72(11):4275-9. PMC: 388703. DOI: 10.1073/pnas.72.11.4275. View

5.
Keller W . Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Natl Acad Sci U S A. 1975; 72(12):4876-80. PMC: 388835. DOI: 10.1073/pnas.72.12.4876. View