Basakis P, Khaderi A, Lom B
MicroPubl Biol. 2023; 2023.
PMID: 38116474
PMC: 10728752.
DOI: 10.17912/micropub.biology.001076.
Jones E, McLaughlin K
Int J Mol Sci. 2023; 24(17).
PMID: 37686164
PMC: 10488252.
DOI: 10.3390/ijms241713358.
Haynes E, Ulland T, Eliceiri K
Front Mol Neurosci. 2022; 15:867010.
PMID: 35493325
PMC: 9046975.
DOI: 10.3389/fnmol.2022.867010.
Fague L, Liu Y, Marsh-Armstrong N
Ann Transl Med. 2021; 9(15):1276.
PMID: 34532413
PMC: 8421956.
DOI: 10.21037/atm-20-5351.
Belrose J, Prasad A, Sammons M, Gibbs K, Szaro B
BMC Genomics. 2020; 21(1):540.
PMID: 32758133
PMC: 7430912.
DOI: 10.1186/s12864-020-06954-8.
A Regeneration Toolkit.
Mokalled M, Poss K
Dev Cell. 2018; 47(3):267-280.
PMID: 30399333
PMC: 6373444.
DOI: 10.1016/j.devcel.2018.10.015.
Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis.
Whitworth G, Misaghi B, Rosenthal D, Mills E, Heinen D, Watson A
Dev Biol. 2016; 426(2):360-373.
PMID: 27471010
PMC: 5897040.
DOI: 10.1016/j.ydbio.2016.06.003.
Using Xenopus laevis retinal and spinal neurons to study mechanisms of axon guidance in vivo and in vitro.
Erdogan B, Ebbert P, Lowery L
Semin Cell Dev Biol. 2016; 51:64-72.
PMID: 26853934
PMC: 4798887.
DOI: 10.1016/j.semcdb.2016.02.003.
Heterogeneous nuclear ribonucleoprotein K, an RNA-binding protein, is required for optic axon regeneration in Xenopus laevis.
Liu Y, Yu H, Deaton S, Szaro B
J Neurosci. 2012; 32(10):3563-74.
PMID: 22399778
PMC: 6621057.
DOI: 10.1523/JNEUROSCI.5197-11.2012.
In vivo spike-timing-dependent plasticity in the optic tectum of Xenopus laevis.
Richards B, Aizenman C, Akerman C
Front Synaptic Neurosci. 2011; 2:7.
PMID: 21423493
PMC: 3059697.
DOI: 10.3389/fnsyn.2010.00007.
The retino-tectal projection in Xenopus with compound eyes.
GAZE R, Jacobson M, Szekely C
J Physiol. 1963; 165:484-99.
PMID: 13946933
PMC: 1359318.
DOI: 10.1113/jphysiol.1963.sp007072.
Optic fiber development between dual transplants of retina and superior colliculus placed in the occipital cortex.
Matthews M, West L
Anat Embryol (Berl). 1982; 163(4):417-33.
PMID: 7091709
DOI: 10.1007/BF00305556.
[Electro-physiological studies after reinnervation of the larynx by vagus-recurrent nerve surgery].
Miehlke A, Kusel H, DAL RI H, Schmidt G
Arch Klin Exp Ohren Nasen Kehlkopfheilkd. 1967; 188(3):668-80.
PMID: 5596367
Degeneration of optic nerve terminals in the frog tectum.
Scott T
J Anat. 1973; 114(Pt 2):261-9.
PMID: 4541672
PMC: 1271471.
The response of isolated cat muscle spindles to passive stretch.
BOYD I, Ward J
J Physiol. 1969; 200(2):104P-105P.
PMID: 4236905
PMC: 1350053.
Transplantation of fetal lateral geniculate nucleus to the occipital cortex: connectivity with host's area 17.
Matthews M
Exp Brain Res. 1985; 58(3):473-89.
PMID: 4007090
DOI: 10.1007/BF00235864.
The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis.
Taylor J, GAZE R
Anat Embryol (Berl). 1990; 181(4):393-404.
PMID: 2346232
DOI: 10.1007/BF00186912.
Regeneration in the Xenopus tadpole optic nerve is preceded by a massive macrophage/microglial response.
Wilson M, GAZE R, Goodbrand I, Taylor J
Anat Embryol (Berl). 1992; 186(1):75-89.
PMID: 1514705
DOI: 10.1007/BF00710404.
An experimental study of the corticofugal system following cerebral lesions in the albino rats.
Leong S
Exp Brain Res. 1976; 26(3):235-47.
PMID: 991955
DOI: 10.1007/BF00234929.
Mechanisms of functional recovery and regeneration after spinal cord transection in larval sea lamprey.
Selzer M
J Physiol. 1978; 277:395-408.
PMID: 650547
PMC: 1282397.
DOI: 10.1113/jphysiol.1978.sp012280.