Hirokawa H, Ikeda Y
J Bacteriol. 1966; 92(2):455-63.
PMID: 16562135
PMC: 276263.
DOI: 10.1128/jb.92.2.455-463.1966.
BRESLER S, Kreneva R, KUSHEV V, Mosevitskii M
Z Vererbungsl. 1964; 95:288-97.
PMID: 14339939
DOI: 10.1007/BF00897013.
Iyer V
J Bacteriol. 1965; 90:495-503.
PMID: 14329465
PMC: 315670.
DOI: 10.1128/jb.90.2.495-503.1965.
Venema G, Pritchard R, VENEMA-SCHROEDER T
J Bacteriol. 1965; 90:343-6.
PMID: 14329445
PMC: 315648.
DOI: 10.1128/jb.90.2.343-346.1965.
Venema G, Pritchard R, VENEMA-SCHROEDER T
J Bacteriol. 1965; 89:1250-5.
PMID: 14292994
PMC: 277636.
DOI: 10.1128/jb.89.5.1250-1255.1965.
BIOSYNTHETIC LATENCY IN EARLY STAGES OF DEOXYRIBONUCLEIC ACIDTRANSFORMATION IN BACILLUS SUBTILIS.
Nester E, Stocker B
J Bacteriol. 1963; 86:785-96.
PMID: 14066476
PMC: 278516.
DOI: 10.1128/jb.86.4.785-796.1963.
INCORPORATION OF DEOXYRIBONUCLEIC ACID IN THE BACILLUS SUBTILIS TRANSFORMATION SYSTEM.
Young F, Spizizen J
J Bacteriol. 1963; 86:392-400.
PMID: 14066414
PMC: 278448.
DOI: 10.1128/jb.86.3.392-400.1963.
Genetic mapping of DNA: influence of the mutated configuration on the frequency of recombination along the length of the molecule.
RAVIN A, Iyer V
Genetics. 1962; 47:1369-84.
PMID: 13990804
PMC: 1210288.
DOI: 10.1093/genetics/47.10.1369.
Heterospecific transformation in the genus Haemophilus.
Albritton W, Setlow J, Thomas M, Sottnek F, Steigerwalt A
Mol Gen Genet. 1984; 193(2):358-63.
PMID: 6607396
DOI: 10.1007/BF00330693.
Transformation in Haemophilus: a problem in membrane biology.
Kahn M, Smith H
J Membr Biol. 1984; 81(2):89-103.
PMID: 6387128
DOI: 10.1007/BF01868974.
Directional transport and integration of donor DNA in Haemophilus influenzae transformation.
BARANY F, Kahn M, Smith H
Proc Natl Acad Sci U S A. 1983; 80(23):7274-8.
PMID: 6316352
PMC: 390037.
DOI: 10.1073/pnas.80.23.7274.
The effect of penicillin on potentially transduced Salmonella typhimurium cells.
Hubacek J
Folia Microbiol (Praha). 1966; 11(1):59-61.
PMID: 5330255
DOI: 10.1007/BF02877159.
Fate of recipient deoxyribonucleic acid during transformation in Haemophilus influenzae.
Steinhart W, HERRIOTT R
J Bacteriol. 1968; 96(5):1718-24.
PMID: 5303721
PMC: 315233.
DOI: 10.1128/jb.96.5.1718-1724.1968.
On the nature of recombinants formed during transformation in Hemophilus influenzae.
Notani N, GOODGAL S
J Gen Physiol. 1966; 49(6):197-209.
PMID: 5298073
PMC: 2195535.
DOI: 10.1085/jgp.49.6.197.
Loss of activity of transforming deoxyribonucleic acid after uptake by Haemophilus influenzae.
VOLL M, GOODGAL S
J Bacteriol. 1965; 90(4):873-83.
PMID: 5294816
PMC: 315751.
DOI: 10.1128/jb.90.4.873-883.1965.
Comparison of deoxyribonucleic acid uptake and marker integration in bacilli and protoplasts of Bacillus subtilis.
MILLER I, Palmer C, Landman O
J Bacteriol. 1972; 110(2):661-6.
PMID: 4623311
PMC: 247462.
DOI: 10.1128/jb.110.2.661-666.1972.
Acid-soluble breakdown of homologous deoxyribbonucleic acid adsorbed by Haemophilus influenzae: its biological significance.
STUY J
J Bacteriol. 1974; 120(2):917-22.
PMID: 4549063
PMC: 245857.
DOI: 10.1128/jb.120.2.917-922.1974.
Cell growth and the initiation of transformation by SV40.
Todaro G, Green H
Proc Natl Acad Sci U S A. 1966; 55(2):302-8.
PMID: 4287385
PMC: 224140.
DOI: 10.1073/pnas.55.2.302.
Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria.
Claverys J, Lacks S
Microbiol Rev. 1986; 50(2):133-65.
PMID: 3523187
PMC: 373061.
DOI: 10.1128/mr.50.2.133-165.1986.
Comparison of transformation mechanisms of Haemophilus parainfluenzae and Haemophilus influenzae.
BARANY F, Kahn M
J Bacteriol. 1985; 161(1):72-9.
PMID: 2981812
PMC: 214836.
DOI: 10.1128/jb.161.1.72-79.1985.