» Articles » PMID: 1347426

The Molecular Mechanism of "ecstasy" [3,4-methylenedioxy-methamphetamine (MDMA)]: Serotonin Transporters Are Targets for MDMA-induced Serotonin Release

Overview
Specialty Science
Date 1992 Mar 1
PMID 1347426
Citations 132
Authors
Affiliations
Soon will be listed here.
Abstract

MDMA ("ecstasy") has been widely reported as a drug of abuse and as a neurotoxin. This report describes the mechanism of MDMA action at serotonin transporters from plasma membranes and secretory vesicles. MDMA stimulates serotonin efflux from both types of membrane vesicle. In plasma membrane vesicles isolated from human platelets, MDMA inhibits serotonin transport and [3H]imipramine binding by direct interaction with the Na(+)-dependent serotonin transporter. MDMA stimulates radiolabel efflux from plasma membrane vesicles preloaded with [3H]serotonin in a stereo-specific, Na(+)-dependent, and imipramine-sensitive manner characteristic of transporter-mediated exchange. In membrane vesicles isolated from bovine adrenal chromaffin granules, which contain the vesicular biogenic amine transporter, MDMA inhibits ATP-dependent [3H]serotonin accumulation and stimulates efflux of previously accumulated [3H]serotonin. Stimulation of vesicular [3H]serotonin efflux is due to dissipation of the transmembrane pH difference generated by ATP hydrolysis and to direct interaction with the vesicular amine transporter.

Citing Articles

Balancing Therapeutic Efficacy and Safety of MDMA and Novel MDXX Analogues as Novel Treatments for Autism Spectrum Disorder.

Kaur H, Karabulut S, Gauld J, Fagot S, Holloway K, Shaw H Psychedelic Med (New Rochelle). 2025; 1(3):166-185.

PMID: 40046567 PMC: 11661495. DOI: 10.1089/psymed.2023.0023.


Fluorescent non-canonical amino acid provides insight into the human serotonin transporter.

Nygaard A, Zachariassen L, Larsen K, Kristensen A, Loland C Nat Commun. 2024; 15(1):9267.

PMID: 39463388 PMC: 11514162. DOI: 10.1038/s41467-024-53584-9.


MDMA for treatment of PTSD and neurorehabilitation in military populations.

Dunn W, Bershad A, Krantz D, Vermetten E NeuroRehabilitation. 2024; 55(3):357-368.

PMID: 39331116 PMC: 11612990. DOI: 10.3233/NRE-230270.


Epigenetic mechanisms of rapid-acting antidepressants.

Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T Transl Psychiatry. 2024; 14(1):359.

PMID: 39231927 PMC: 11375021. DOI: 10.1038/s41398-024-03055-y.


Bioisosteric analogs of MDMA: Improving the pharmacological profile?.

Alberto-Silva A, Hemmer S, Bock H, da Silva L, Scott K, Kastner N J Neurochem. 2024; 168(9):2022-2042.

PMID: 38898705 PMC: 11449655. DOI: 10.1111/jnc.16149.


References
1.
OHearn E, Battaglia G, DE SOUZA E, Kuhar M, Molliver M . Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci. 1988; 8(8):2788-803. PMC: 6569396. View

2.
LOWRY O, ROSEBROUGH N, FARR A, RANDALL R . Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-75. View

3.
Nichols D, Lloyd D, Hoffman A, Nichols M, YIM G . Effects of certain hallucinogenic amphetamine analogues on the release of [3H]serotonin from rat brain synaptosomes. J Med Chem. 1982; 25(5):530-5. DOI: 10.1021/jm00347a010. View

4.
Rudnick G, Fishkes H, Nelson P, Schuldiner S . Evidence for two distinct serotonin transport systems in platelets. J Biol Chem. 1980; 255(8):3638-41. View

5.
Mota I, BERALDO W, FERRI A, JUNQUEIRA L . Intracellular distribution of histamine. Nature. 1954; 174(4432):698. DOI: 10.1038/174698a0. View