» Articles » PMID: 12923205

Temperature Dependence of Na+-H+ Exchange, Na+-HCO3- Co-transport, Intracellular Buffering and Intracellular PH in Guinea-pig Ventricular Myocytes

Overview
Journal J Physiol
Specialty Physiology
Date 2003 Aug 19
PMID 12923205
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Almost all aspects of cardiac function are sensitive to modest changes of temperature. We have examined the thermal sensitivity of intracellular pH regulation in the heart. To do this we determined the temperature sensitivity of pHi, intracellular buffering capacity, and the activity of sarcolemmal acid-extrusion proteins, Na+-H+ exchange (NHE) and Na+-HCO3- co-transport (NBC) in guinea-pig isolated ventricular myocytes. pHi was recorded fluorimetrically with acetoxymethyl (AM)-loaded carboxy-SNARF-1 at either 27 or 37 degrees C. At 27 degrees C, intrinsic (non-CO2-dependent) buffering power (betai) was approximately 60% of that at 37 degrees C. Acid-extrusion (Je) through NHE was approximately 50% slower than at 37 degrees C, consistent with a Q10 of approximately 2. In 5% CO2/HCO3--buffered conditions, in the presence of 30 microM cariporide to inhibit NHE, acid extrusion via NBC was also slowed at 27 degrees C, suggestive of a comparable Q10. Resting pHi at 27 degrees C was similar in Hepes- or 5% CO2/HCO3--buffered superfusates but, in both cases, was approximately 0.1 pH units lower at 37 degrees C. The higher the starting pHi, the larger was the thermally induced fall of pHi, consistent with a mathematical model where intrinsic buffers with a low principal pKa (e.g. close to 6.0) are less temperature-sensitive than those with a higher pKa. The high temperature sensitivity of pHi regulation in mammalian cardiac cells has implications for experimental work conducted at room temperature. It also has implications for the ability of intracellular acidosis to generate intracellular Na+ and Ca2+ overload, cardiac injury and arrhythmia in the heart.

Citing Articles

Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes.

Lyu Y, Thai P, Ren L, Timofeyev V, Jian Z, Park S iScience. 2022; 25(1):103624.

PMID: 35005560 PMC: 8718820. DOI: 10.1016/j.isci.2021.103624.


A Novel AAV-mediated Gene Delivery System Corrects CFTR Function in Pigs.

Cooney A, Thornell I, Singh B, Shah V, Stoltz D, McCray Jr P Am J Respir Cell Mol Biol. 2019; 61(6):747-754.

PMID: 31184507 PMC: 6890402. DOI: 10.1165/rcmb.2019-0006OC.


Nominal carbonic anhydrase activity minimizes airway-surface liquid pH changes during breathing.

Thornell I, Li X, Tang X, Brommel C, Karp P, Welsh M Physiol Rep. 2018; 6(2).

PMID: 29380953 PMC: 5789725. DOI: 10.14814/phy2.13569.


Regional acidosis locally inhibits but remotely stimulates Ca2+ waves in ventricular myocytes.

Ford K, Moorhouse E, Bortolozzi M, Richards M, Swietach P, Vaughan-Jones R Cardiovasc Res. 2017; 113(8):984-995.

PMID: 28339694 PMC: 5852542. DOI: 10.1093/cvr/cvx033.


Acute temperature sensitivity in optic nerve axons explained by an electrogenic membrane potential.

Coates T, Woolnough O, Masters J, Asadova G, Chandrakumar C, Baker M Pflugers Arch. 2015; 467(11):2337-49.

PMID: 25724933 DOI: 10.1007/s00424-015-1696-2.


References
1.
Graber M, Barry C, Dipaola J, Hasagawa A . Intracellular pH in OK cells. II. Effects of temperature on cell pH. Am J Physiol. 1992; 262(5 Pt 2):F723-30. DOI: 10.1152/ajprenal.1992.262.5.F723. View

2.
Shipolini A, Galinanes M, Edmondson S, Hearse D, Avkiran M . Na+/H+ exchanger inhibitor HOE-642 improves cardioplegic myocardial preservation under both normothermic and hypothermic conditions. Circulation. 1997; 96(9 Suppl):II-266-73. View

3.
Orchard C, Cingolani H . Acidosis and arrhythmias in cardiac muscle. Cardiovasc Res. 1994; 28(9):1312-9. DOI: 10.1093/cvr/28.9.1312. View

4.
Zhou Z, WILLIS J . Differential effects of cooling in hibernator and nonhibernator cells: Na permeation. Am J Physiol. 1989; 256(1 Pt 2):R49-55. DOI: 10.1152/ajpregu.1989.256.1.R49. View

5.
Leem C, Lagadic-Gossmann D, Vaughan-Jones R . Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J Physiol. 1999; 517 ( Pt 1):159-80. PMC: 2269328. DOI: 10.1111/j.1469-7793.1999.0159z.x. View