Fu J, Tang J, Wang Y, Cui X, Yang Q, Hong J
Front Pharmacol. 2018; 9:681.
PMID: 29997509
PMC: 6028727.
DOI: 10.3389/fphar.2018.00681.
Srivastava V, Obudulu O, Bygdell J, Lofstedt T, Ryden P, Nilsson R
BMC Genomics. 2013; 14:893.
PMID: 24341908
PMC: 3878592.
DOI: 10.1186/1471-2164-14-893.
Chen C, Shih T, Pai T, Liu Z, Chang M, Hu C
IET Syst Biol. 2013; 7(5):135-42.
PMID: 24067413
PMC: 8687397.
DOI: 10.1049/iet-syb.2012.0060.
Serhal P, Lemieux S
Adv Bioinformatics. 2013; 2013:167915.
PMID: 23573083
PMC: 3610395.
DOI: 10.1155/2013/167915.
Tesfaye M, Silverstein K, Nallu S, Wang L, Botanga C, Gomez S
PLoS One. 2013; 8(3):e58992.
PMID: 23527067
PMC: 3601123.
DOI: 10.1371/journal.pone.0058992.
Microarray meta-analysis database (M(2)DB): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database.
Cheng W, Tsai M, Chang C, Huang C, Chen C, Shu W
BMC Bioinformatics. 2010; 11:421.
PMID: 20698961
PMC: 2928207.
DOI: 10.1186/1471-2105-11-421.
A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene.
Burton R, Ma G, Baumann U, Harvey A, Shirley N, Taylor J
Plant Physiol. 2010; 153(4):1716-28.
PMID: 20530215
PMC: 2923883.
DOI: 10.1104/pp.110.158329.
Normalization and gene p-value estimation: issues in microarray data processing.
Fundel K, Kuffner R, Aigner T, Zimmer R
Bioinform Biol Insights. 2009; 2:291-305.
PMID: 19812783
PMC: 2735944.
DOI: 10.4137/bbi.s441.
Seawater-regulated genes for two-component systems and outer membrane proteins in myxococcus.
Pan H, Liu H, Liu T, Li C, Li Z, Cai K
J Bacteriol. 2009; 191(7):2102-11.
PMID: 19151139
PMC: 2655515.
DOI: 10.1128/JB.01556-08.
A cross-species transcriptomics approach to identify genes involved in leaf development.
Street N, Sjodin A, Bylesjo M, Gustafsson P, Trygg J, Jansson S
BMC Genomics. 2008; 9:589.
PMID: 19061504
PMC: 2621207.
DOI: 10.1186/1471-2164-9-589.
Global expression profiling in leaves of free-growing aspen.
Sjodin A, Wissel K, Bylesjo M, Trygg J, Jansson S
BMC Plant Biol. 2008; 8:61.
PMID: 18500984
PMC: 2416451.
DOI: 10.1186/1471-2229-8-61.
Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition.
Clarke B, Liang R, Morell M, Bird A, Jenkins C, Li Z
Funct Integr Genomics. 2008; 8(3):211-21.
PMID: 18270759
DOI: 10.1007/s10142-007-0070-7.
Using generalized procrustes analysis (GPA) for normalization of cDNA microarray data.
Xiong H, Zhang D, Martyniuk C, Trudeau V, Xia X
BMC Bioinformatics. 2008; 9:25.
PMID: 18199333
PMC: 2275243.
DOI: 10.1186/1471-2105-9-25.
Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules.
Wu Y, Llewellyn D, White R, Ruggiero K, Al-Ghazi Y, Dennis E
Planta. 2007; 226(6):1475-90.
PMID: 17636323
DOI: 10.1007/s00425-007-0580-5.
Global profiling of genes modified by endoplasmic reticulum stress in pancreatic beta cells reveals the early degradation of insulin mRNAs.
Pirot P, Naamane N, Libert F, Magnusson N, Orntoft T, Cardozo A
Diabetologia. 2007; 50(5):1006-14.
PMID: 17333111
DOI: 10.1007/s00125-007-0609-0.
Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory.
Sayyed-Ahmad A, Tuncay K, Ortoleva P
BMC Bioinformatics. 2007; 8:20.
PMID: 17244365
PMC: 1790715.
DOI: 10.1186/1471-2105-8-20.
Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes.
Oshlack A, Emslie D, Corcoran L, Smyth G
Genome Biol. 2007; 8(1):R2.
PMID: 17204140
PMC: 1839120.
DOI: 10.1186/gb-2007-8-1-r2.
ProCAT: a data analysis approach for protein microarrays.
Zhu X, Gerstein M, Snyder M
Genome Biol. 2006; 7(11):R110.
PMID: 17109749
PMC: 1794587.
DOI: 10.1186/gb-2006-7-11-r110.
High-resolution spatial normalization for microarrays containing embedded technical replicates.
Yuan D, Irizarry R
Bioinformatics. 2006; 22(24):3054-60.
PMID: 17060357
PMC: 2262854.
DOI: 10.1093/bioinformatics/btl542.
Normalization using weighted negative second order exponential error functions (NeONORM) provides robustness against asymmetries in comparative transcriptome profiles and avoids false calls.
Noth S, Brysbaert G, Benecke A
Genomics Proteomics Bioinformatics. 2006; 4(2):90-109.
PMID: 16970549
PMC: 5054038.
DOI: 10.1016/S1672-0229(06)60021-1.