» Articles » PMID: 12810179

Meta-analysis of COL1A1 Sp1 Polymorphism in Relation to Bone Mineral Density and Osteoporotic Fracture

Overview
Journal Bone
Date 2003 Jun 18
PMID 12810179
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic factors play an important role in the pathogenesis of osteoporosis and several candidate gene polymorphisms have been implicated in the regulation of this process. One of the most widely studied is the Sp1 binding site polymorphism in the COL1A1 gene. This polymorphism has been associated with BMD and osteoporotic fracture in several studies, but the data from different studies have been conflicting. Here we have attempted to clarify the association between COL1A1 Sp1 alleles, BMD, and osteoporotic fracture by conducting a meta-analysis of 26 published studies including 7849 participants. Under a fixed effects model, BMD values at the lumbar spine (6800 subjects) were significantly lower in the "Ss" genotype group when compared with "SS" homozygotes (standardized mean difference = 0.131 [95% CI, 0.06,0.16], P = 0.00005) but the difference was not significant for the "ss" comparison (0.09 [-0.03,0.21], P = 0.13). At the femoral neck (6750 subjects) BMD values were lower in the "Ss" genotype (0.14 [0.08,0.19], P < 0.00001) and lower still in the "ss" genotype group (0.19 [0.07,0.31], P = 0.001). Similar results were found when the data were analyzed under a random effects model. Analysis of fracture data (6961 subjects) showed an increased odds ratio for any fracture in "Ss" subjects (1.26 [95% CI 1.09,1.46], P = 0.002) and an even greater increase in "ss" subjects (1.78 [1.30,2.43], P = 0.0003). Subgroup analysis showed that increased risk was largely attributable to vertebral fracture where the odds ratio was 1.37 [1.15,1.64] for "Ss" (P = 0.0004) and 2.48 [1.69,3.65] for "ss" (P < 0.00001). The risk of nonvertebral fracture was not increased in relation to the COL1A1 genotype, although power to detect an effect was limited by the fact that fewer studies had analyzed nonvertebral fracture. We conclude that the COL1A1 Sp1 alleles are associated with a modest reduction in BMD and a significant increase in risk of osteoporotic fracture, particularly vertebral fracture.

Citing Articles

The rs1800012 polymorphism is associated with osteoporosis or fracture risk: a meta-analysis of 30 studies.

Xu P, Wang Y, Wu X, Wang W, Wang Q, Lin W Int J Burns Trauma. 2025; 14(6):148-159.

PMID: 39850783 PMC: 11751553. DOI: 10.62347/KKAM3344.


Genomic Determinants of Knee Joint Biomechanics: An Exploration into the Molecular Basis of Locomotor Function, a Narrative Review.

Iacobescu G, Iacobescu L, Popa M, Covache-Busuioc R, Corlatescu A, Cirstoiu C Curr Issues Mol Biol. 2024; 46(2):1237-1258.

PMID: 38392197 PMC: 10888373. DOI: 10.3390/cimb46020079.


Protective effect of miR-33-5p on the M1/M2 polarization of microglia and the underlying mechanism.

Chai S, Sheng Y, Sun R, He J, Chen L, He F Bioengineered. 2022; 13(4):10774-10785.

PMID: 35485294 PMC: 9208509. DOI: 10.1080/21655979.2022.2061285.


Identification and development of the novel 7-genes diagnostic signature by integrating multi cohorts based on osteoarthritis.

Han Y, Wu J, Gong Z, Zhou Y, Li H, Chen Y Hereditas. 2022; 159(1):10.

PMID: 35093162 PMC: 8801091. DOI: 10.1186/s41065-022-00226-z.


Bone mineral density in high-level endurance runners: Part B-genotype-dependent characteristics.

Herbert A, Williams A, Lockey S, Erskine R, Sale C, Hennis P Eur J Appl Physiol. 2021; 122(1):71-80.

PMID: 34550467 PMC: 8748376. DOI: 10.1007/s00421-021-04789-z.