» Articles » PMID: 12750470

Beyond Superquenching: Hyper-efficient Energy Transfer from Conjugated Polymers to Gold Nanoparticles

Overview
Specialty Science
Date 2003 May 17
PMID 12750470
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

Gold nanoparticles quench the fluorescence of cationic polyfluorene with Stern-Volmer constants (KSV) approaching 1011 M-1, several orders of magnitude larger than any previously reported conjugated polymer-quencher pair and 9-10 orders of magnitude larger than small molecule dye-quencher pairs. The dependence of KSV on ionic strength, charge and conjugation length of the polymer, and the dimensions (and thus optical properties) of the nanoparticles suggests that three factors account for this extraordinary efficiency: (i) amplification of the quenching via rapid internal energy or electron transfer, (ii) electrostatic interactions between the cationic polymer and anionic nanoparticles, and (iii) the ability of gold nanoparticles to quench via efficient energy transfer. As a result of this extraordinarily high KSV, quenching can be observed even at subpicomolar concentrations of nanoparticles, suggesting that the combination of conjugated polymers with these nanomaterials can potentially lead to improved sensitivity in optical biosensors.

Citing Articles

Ultrabright contrast agents with synergistic Raman enhancements for precise intraoperative imaging and photothermal ablation of orthotopic tumor models.

Ma Y, Xia S, Hu A, Zhang Q, Shao Z, Tian B J Nanobiotechnology. 2025; 23(1):26.

PMID: 39828675 PMC: 11743016. DOI: 10.1186/s12951-025-03099-2.


Electron transfer and energy exchange between a covalent organic framework and CuFeS nanoparticles.

Bika P, Tzitzios V, Sakellis E, Orfanoudakis S, Boukos N, Alhassan S J Mater Chem C Mater. 2024; 12(28):10475-10486.

PMID: 39035222 PMC: 11257035. DOI: 10.1039/d4tc01989j.


Spatiotemporal Imaging of Zinc Ions in Zebrafish Live Brain Tissue Enabled by Fluorescent Bionanoprobes.

Jarosova R, Woolfolk S, Martinez-Rivera N, Jaeschke M, Rosa-Molinar E, Tamerler C Molecules. 2023; 28(5).

PMID: 36903504 PMC: 10005619. DOI: 10.3390/molecules28052260.


Rational design of semiconducting polymer brushes as cancer theranostics.

Yang Z, Li L, Jin A, Huang W, Chen X Mater Horiz. 2021; 7(6):1474-1494.

PMID: 33777400 PMC: 7990392. DOI: 10.1039/d0mh00012d.


Cyclodextrin-mediated gold nanoparticles as multisensing probe for the selective detection of hydroxychloroquine drug.

George J, Mathew B Korean J Chem Eng. 2021; 38(3):624-634.

PMID: 33716372 PMC: 7935477. DOI: 10.1007/s11814-020-0719-7.


References
1.
Fan C, Plaxco K, Heeger A . High-efficiency fluorescence quenching of conjugated polymers by proteins. J Am Chem Soc. 2002; 124(20):5642-3. DOI: 10.1021/ja025899u. View

2.
Heeger P, Heeger A . Making sense of polymer-based biosensors. Proc Natl Acad Sci U S A. 1999; 96(22):12219-21. PMC: 34252. DOI: 10.1073/pnas.96.22.12219. View

3.
Gaylord B, Heeger A, Bazan G . DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci U S A. 2002; 99(17):10954-7. PMC: 123191. DOI: 10.1073/pnas.162375999. View

4.
Kamat P, Barazzouk S, Hotchandani S . Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angew Chem Int Ed Engl. 2002; 41(15):2764-7. DOI: 10.1002/1521-3773(20020802)41:15<2764::AID-ANIE2764>3.0.CO;2-E. View

5.
Wang D, Gong X, Heeger P, Rininsland F, Bazan G, Heeger A . Biosensors from conjugated polyelectrolyte complexes. Proc Natl Acad Sci U S A. 2002; 99(1):49-53. PMC: 117512. DOI: 10.1073/pnas.012581399. View