» Articles » PMID: 12663331

Acute Allergic Responses Induce a Prompt Luminal Entry of Airway Tissue Eosinophils

Overview
Date 2003 Mar 29
PMID 12663331
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Traditionally, traffic and activation of eosinophils in asthmatic airways are thought to take place during the late-phase allergic reaction. The present study tests the hypothesis that when eosinophils are present in the tissue before allergen exposure, as in chronically inflamed asthmatic airways, acute anaphylactic reactions initiate an eosinophil response. Using a guinea-pig allergic model, where eosinophilia is present at baseline conditions, the traffic of resident eosinophils was examined in vivo immediately after allergen challenge. By 2 min after challenge, eosinophils had moved up to apical epithelial positions. Within 10 min, a marked migration of eosinophils into the airway lumen was demonstrated. Along with the allergen-induced egression of eosinophils, acute luminal entry of plasma proteins and eotaxin occurred. Eosinophil egression was effectively inhibited by the antiexudative drug formoterol, whereas the proexudative drug bradykinin could in naive animals evoke a prompt luminal entry of eosinophils. In conclusion, the present study demonstrates that acute allergic reactions initiate a prompt transepithelial migration of resident eosinophils. Our data further suggest that this response in part is initiated by the plasma exudation response, which may alter the transepithelial gradient of eosinophil chemoattractants including eotaxin. We propose that prompt eosinophil response is a significant component of the acute phase of allergic reactions when occurring in airways where these cells are already present in the mucosa.

Citing Articles

Broad Th2 neutralization and anti-inflammatory action of pentosan polysulfate sodium in experimental allergic rhinitis.

Sanden C, Mori M, Jogdand P, Jonsson J, Krishnan R, Wang X Immun Inflamm Dis. 2017; 5(3):300-309.

PMID: 28497614 PMC: 5569365. DOI: 10.1002/iid3.164.


Resolution of cell-mediated airways diseases.

Persson C, Uller L Respir Res. 2010; 11:75.

PMID: 20540713 PMC: 2900258. DOI: 10.1186/1465-9921-11-75.


Primary prevention of asthma: age and sex influence sensitivity to allergen-induced airway inflammation and contribute to asthma heterogeneity in Guinea pigs.

Regal J, Regal R, Meehan J, Mohrman M Int Arch Allergy Immunol. 2006; 141(3):241-56.

PMID: 16931886 PMC: 2978645. DOI: 10.1159/000095294.


Adding salmeterol to an inhaled corticosteroid: long term effects on bronchial inflammation in asthma.

Koopmans J, Lutter R, Jansen H, van der Zee J Thorax. 2006; 61(4):306-12.

PMID: 16449264 PMC: 2104614. DOI: 10.1136/thx.2005.051292.


Effects of steroid treatment on lung CC chemokines, apoptosis and transepithelial cell clearance during development and resolution of allergic airway inflammation.

Uller L, Lloyd C, Rydell-Tormanen K, Persson C, Erjefalt J Clin Exp Allergy. 2006; 36(1):111-21.

PMID: 16393273 PMC: 3389735. DOI: 10.1111/j.1365-2222.2006.02396.x.