» Articles » PMID: 12655050

Superoxo, Mu-peroxo, and Mu-oxo Complexes from Heme/O2 and Heme-Cu/O2 Reactivity: Copper Ligand Influences in Cytochrome C Oxidase Models

Abstract

The O(2)-reaction chemistry of 1:1 mixtures of (F(8))Fe(II) (1; F(8) = tetrakis(2,6-diflurorophenyl)porphyrinate) and [(L(Me(2))N)Cu(I)](+) (2; L(Me(2))N = N,N-bis(2-[2-(N',N'-4-dimethylamino)pyridyl]ethyl)methylamine) is described, to model aspects of the chemistry occurring in cytochrome c oxidase. Spectroscopic investigations, along with stopped-flow kinetics, reveal that low-temperature oxygenation of 1/2 leads to rapid formation of a heme-superoxo species (F(8))Fe(III)-(O(2)(-)) (3), whether or not 2 is present. Complex 3 subsequently reacts with 2 to form [(F(8))Fe(III)-(O(2)(2-))-Cu(II)(L(Me(2))N)](+) (4), which thermally converts to [(F(8))Fe(III)-(O)-Cu(II)(L(Me(2))N)](+) (5), which has an unusually bent (Fe-O-Cu) bond moiety. Tridentate chelation, compared with tetradentate, is shown to dramatically lower the nu(O-O) values observed in 4 and give rise to the novel structural features in 5.

Citing Articles

Heme-copper and Heme O-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry.

Panda S, Phan H, Karlin K J Inorg Biochem. 2023; 249:112367.

PMID: 37742491 PMC: 10615892. DOI: 10.1016/j.jinorgbio.2023.112367.


Stabilization and activation of molecular oxygen at biomimetic tetrapyrroles on surfaces: from UHV to near-ambient pressure.

Vesselli E Nanoscale Adv. 2022; 3(5):1319-1330.

PMID: 36132852 PMC: 9417665. DOI: 10.1039/d0na00827c.


A copper-based metal-organic framework/reduced graphene oxide-modified electrode for electrochemical detection of paraquat.

Wachholz Junior D, Deroco P, Kubota L Mikrochim Acta. 2022; 189(8):278.

PMID: 35829918 DOI: 10.1007/s00604-022-05358-7.


An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen.

Sacramento J, Albert T, Siegler M, Moenne-Loccoz P, Goldberg D Angew Chem Int Ed Engl. 2021; 61(2):e202111492.

PMID: 34850509 PMC: 8789326. DOI: 10.1002/anie.202111492.


Heme-Fe Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe-O Complex H-Atom Abstraction Reactivity.

Kim H, Rogler P, Sharma S, Schaefer A, Solomon E, Karlin K J Am Chem Soc. 2020; 142(6):3104-3116.

PMID: 31913628 PMC: 7034651. DOI: 10.1021/jacs.9b12571.


References
1.
Que Jr L, Tolman W . Bis(mu-oxo)dimetal "diamond" cores in copper and iron complexes relevant to biocatalysis. Angew Chem Int Ed Engl. 2002; 41(7):1114-37. DOI: 10.1002/1521-3773(20020402)41:7<1114::aid-anie1114>3.0.co;2-6. View

2.
Ostermeier C, Harrenga A, Ermler U, Michel H . Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A. 1997; 94(20):10547-53. PMC: 23397. DOI: 10.1073/pnas.94.20.10547. View

3.
Babcock G . How oxygen is activated and reduced in respiration. Proc Natl Acad Sci U S A. 1999; 96(23):12971-3. PMC: 33932. DOI: 10.1073/pnas.96.23.12971. View

4.
Baldwin J, Ley B, Loehr T, Bollinger Jr J . O2 activation by non-heme diiron proteins: identification of a symmetric mu-1,2-peroxide in a mutant of ribonucleotide reductase. Biochemistry. 1998; 37(42):14659-63. DOI: 10.1021/bi981838q. View

5.
Proshlyakov D, Pressler M, DeMaso C, Leykam J, Dewitt D, Babcock G . Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science. 2000; 290(5496):1588-91. DOI: 10.1126/science.290.5496.1588. View