» Articles » PMID: 12647855

Differential Metabolism of 1,8-cineole in Insects

Overview
Journal J Chem Ecol
Publisher Springer
Date 2003 Mar 22
PMID 12647855
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

In order to compare the metabolism of 1,8-cineole in the pyrgo beetle, Paropsisterna tigrina, three other herbivorous insect species, Faex nigroconspersa, Chrysophtharta bimaculata, and Oxyops vitiosa, were fed 1,8-cineole leaf diets. F. nigroconspersa adults excreted predominantly 9-hydroxy-1,8-cineole (36.2% of the volatile constituents) with some 2alpha-hydroxy-1,8-cineole (11.4%). In contrast, larvae excreted predominantly 2alpha-hydroxy-1,8-cineole (27.4%) and smaller proportions of 9-hydroxy-1,8-cineole (5.2%) and 3alpha-hydroxy-1,8-cineole (4.3%). C. bimaculata adults excreted predominantly 3alpha-hydroxy-1,8-cineole (16.5%). Oxyops vitiosa adults, on a lower 1,8-cineole diet, excreted predominantly 2alpha,9-dihydroxy-1,8-cineole (4.2%) and 2alpha-hydroxy-1,8-cineole (3.5%), with smaller proportions of 3alpha-hydroxy-1,8-cineole (1.1%) and 9-hydroxy-1,8-cineole (0.5%). This is the first reported occurrence of a dihydroxycineole as an insect metabolite. Gas chromatographic and mass spectral data for hydroxycineoles are recorded and interspecific metabolite variation discussed.

Citing Articles

A Review of the Botany, Volatile Composition, Biochemical and Molecular Aspects, and Traditional Uses of .

Paparella A, Nawade B, Shaltiel-Harpaz L, Ibdah M Plants (Basel). 2022; 11(9).

PMID: 35567209 PMC: 9100900. DOI: 10.3390/plants11091209.


Volatiles from the hypoxylaceous fungi and .

Rinkel J, Babczyk A, Wang T, Stadler M, Dickschat J Beilstein J Org Chem. 2018; 14:2974-2990.

PMID: 30591821 PMC: 6296411. DOI: 10.3762/bjoc.14.277.


Foliar Terpene Chemotypes and Herbivory Determine Variation in Plant Volatile Emissions.

Bustos-Segura C, Foley W J Chem Ecol. 2018; 44(1):51-61.

PMID: 29376212 DOI: 10.1007/s10886-017-0919-8.


Cultivable gut bacteria provide a pathway for adaptation of Chrysolina herbacea to Mentha aquatica volatiles.

Pizzolante G, Cordero C, Tredici S, Vergara D, Pontieri P, Del Giudice L BMC Plant Biol. 2017; 17(1):30.

PMID: 28249605 PMC: 5333409. DOI: 10.1186/s12870-017-0986-6.


Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1.

Mi J, Schewe H, Buchhaupt M, Holtmann D, Schrader J World J Microbiol Biotechnol. 2016; 32(7):112.

PMID: 27263007 DOI: 10.1007/s11274-016-2071-y.


References
1.
Morrow P, Fox L . Effects of variation in Eucalyptus essential oil yield on insect growth and grazing damage. Oecologia. 2017; 45(2):209-219. DOI: 10.1007/BF00346462. View

2.
Wheeler G, MASSEY L, Southwell I . Antipredator defense of biological control agent Oxyops vitiosa is mediated by plant volatiles sequestered from the host plant Melaleuca quinquenervia. J Chem Ecol. 2002; 28(2):297-315. DOI: 10.1023/a:1017982007812. View

3.
Madyastha K, Chadha A . Metabolism of 1,8-cineole in rat: its effects on liver and lung microsomal cytochrome P-450 systems. Bull Environ Contam Toxicol. 1986; 37(5):759-66. DOI: 10.1007/BF01607836. View

4.
Southwell I, Flynn T, Degabriele R . Metabolism of alpha- and beta-pinene, p-cymene and 1,8-cineole in the brushtail possum, Trichosurus vulpecula. Xenobiotica. 1980; 10(1):17-23. DOI: 10.3109/00498258009033726. View

5.
Southwell I, Maddox C, Zalucki M . Metabolism of 1,8-cineole in tea tree (Melaleuca alternifolia andM. linariifolia) by pyrgo beetle (Paropsisterna tigrina). J Chem Ecol. 2013; 21(4):439-53. DOI: 10.1007/BF02036741. View