» Articles » PMID: 12562823

Prokaryotic Utilization of the Twin-arginine Translocation Pathway: a Genomic Survey

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2003 Feb 4
PMID 12562823
Citations 106
Authors
Affiliations
Soon will be listed here.
Abstract

The twin-arginine translocation (Tat) pathway, which has been identified in plant chloroplasts and prokaryotes, allows for the secretion of folded proteins. However, the extent to which this pathway is used among the prokaryotes is not known. By using a genomic approach, a comprehensive list of putative Tat substrates for 84 diverse prokaryotes was established. Strikingly, the results indicate that the Tat pathway is utilized to highly varying extents. Furthermore, while many prokaryotes use this pathway predominantly for the secretion of redox proteins, analyses of the predicted substrates suggest that certain bacteria and archaea secrete mainly nonredox proteins via the Tat pathway. While no correlation was observed between the number of Tat machinery components encoded by an organism and the number of predicted Tat substrates, it was noted that the composition of this machinery was specific to phylogenetic taxa.

Citing Articles

Acidification-based mineral weathering mechanism involves a glucose/methanol/choline oxidoreductase in PML1(12).

Blanco Nouche C, Picard L, Cochet C, Paris C, Oger P, Turpault M Appl Environ Microbiol. 2024; 90(12):e0122124.

PMID: 39503492 PMC: 11654791. DOI: 10.1128/aem.01221-24.


SignalP: The Evolution of a Web Server.

Nielsen H, Teufel F, Brunak S, von Heijne G Methods Mol Biol. 2024; 2836:331-367.

PMID: 38995548 DOI: 10.1007/978-1-0716-4007-4_17.


Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase.

Gallego-Parrilla J, Severi E, Chandra G, Palmer T Microbiology (Reading). 2024; 170(2).

PMID: 38363712 PMC: 10924467. DOI: 10.1099/mic.0.001431.


Genomes of four Streptomyces strains reveal insights into putative new species and pathogenicity of scab-causing organisms.

Henao L, Shirali Hossein Zade R, Restrepo S, Husserl J, Abeel T BMC Genomics. 2023; 24(1):143.

PMID: 36959546 PMC: 10037901. DOI: 10.1186/s12864-023-09190-y.


Length matters: Functional flip of the short TatA transmembrane helix.

Stockwald E, Steger L, Vollmer S, Gottselig C, Grage S, Burck J Biophys J. 2022; 122(11):2125-2146.

PMID: 36523158 PMC: 10257086. DOI: 10.1016/j.bpj.2022.12.016.


References
1.
Bentley S, Chater K, Challis G, Thomson N, James K, Harris D . Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002; 417(6885):141-7. DOI: 10.1038/417141a. View

2.
Ize B, Gerard F, Zhang M, Chanal A, Voulhoux R, Palmer T . In vivo dissection of the Tat translocation pathway in Escherichia coli. J Mol Biol. 2002; 317(3):327-35. DOI: 10.1006/jmbi.2002.5431. View

3.
Ochsner U, Snyder A, Vasil A, Vasil M . Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci U S A. 2002; 99(12):8312-7. PMC: 123064. DOI: 10.1073/pnas.082238299. View

4.
DeLisa M, Samuelson P, Palmer T, Georgiou G . Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J Biol Chem. 2002; 277(33):29825-31. DOI: 10.1074/jbc.M201956200. View

5.
Rose R, Bruser T, Kissinger J, Pohlschroder M . Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol. 2002; 45(4):943-50. DOI: 10.1046/j.1365-2958.2002.03090.x. View