» Articles » PMID: 12554858

The 9-A Solution: How MRNA Pseudoknots Promote Efficient Programmed -1 Ribosomal Frameshifting

Overview
Journal RNA
Specialty Molecular Biology
Date 2003 Jan 30
PMID 12554858
Citations 103
Authors
Affiliations
Soon will be listed here.
Abstract

There is something special about mRNA pseudoknots that allows them to elicit efficient levels of programmed -1 ribosomal frameshifting. Here, we present a synthesis of recent crystallographic, molecular, biochemical, and genetic studies to explain this property. Movement of 9 A by the anticodon loop of the aminoacyl-tRNA at the accommodation step normally pulls the downstream mRNA a similar distance along with it. We suggest that the downstream mRNA pseudoknot provides resistance to this movement by becoming wedged into the entrance of the ribosomal mRNA tunnel. These two opposing forces result in the creation of a local region of tension in the mRNA between the A-site codon and the mRNA pseudoknot. This can be relieved by one of two mechanisms; unwinding the pseudoknot, allowing the downstream region to move forward, or by slippage of the proximal region of the mRNA backwards by one base. The observed result of the latter mechanism is a net shift of reading frame by one base in the 5' direction, that is, a -1 ribosomal frameshift.

Citing Articles

Heterogeneous and multiple conformational transition pathways between pseudoknots of the SARS-CoV-2 frameshift element.

Yan S, Schlick T Proc Natl Acad Sci U S A. 2025; 122(4):e2417479122.

PMID: 39854230 PMC: 11789066. DOI: 10.1073/pnas.2417479122.


RNA elements required for the high efficiency of West Nile virus-induced ribosomal frameshifting.

Aleksashin N, Langeberg C, Shelke R, Yin T, Cate J Nucleic Acids Res. 2024; 53(3).

PMID: 39698810 PMC: 11797035. DOI: 10.1093/nar/gkae1248.


Origin of ribonucleotide recognition motifs through ligand mimicry at early earth.

Mozumdar D, Roy R RNA Biol. 2024; 21(1):107-121.

PMID: 39526332 PMC: 11556283. DOI: 10.1080/15476286.2024.2423149.


Investigating the correlation between Xrn1-resistant RNAs and frameshifter pseudoknots.

Dilweg I, Oskam M, Overbeek S, Olsthoorn R RNA Biol. 2023; 20(1):409-418.

PMID: 37400999 PMC: 10321173. DOI: 10.1080/15476286.2023.2205224.


Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication.

Bassett M, Salemi M, Magalis B Microbiol Mol Biol Rev. 2022; 86(3):e0005721.

PMID: 35862724 PMC: 9491204. DOI: 10.1128/mmbr.00057-21.


References
1.
Ogle J, Brodersen D, Clemons Jr W, Tarry M, Carter A, Ramakrishnan V . Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001; 292(5518):897-902. DOI: 10.1126/science.1060612. View

2.
Tu C, Tzeng T, Bruenn J . Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc Natl Acad Sci U S A. 1992; 89(18):8636-40. PMC: 49975. DOI: 10.1073/pnas.89.18.8636. View

3.
Agrawal R, Spahn C, Penczek P, Grassucci R, Nierhaus K, Frank J . Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol. 2000; 150(3):447-60. PMC: 2175196. DOI: 10.1083/jcb.150.3.447. View

4.
Ban N, Nissen P, Hansen J, Moore P, Steitz T . The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000; 289(5481):905-20. DOI: 10.1126/science.289.5481.905. View

5.
Nissen P, Hansen J, Ban N, Moore P, Steitz T . The structural basis of ribosome activity in peptide bond synthesis. Science. 2000; 289(5481):920-30. DOI: 10.1126/science.289.5481.920. View