Bardwell Speltz L, Lee S, Shu Y, Bernstein M
ArXiv. 2025; .
PMID: 39764403
PMC: 11702805.
Bardwell Speltz L, Lee S, Shu Y, Tarasek M, Trzasko J, Foo T
Magn Reson Med. 2024; 92(4):1714-1727.
PMID: 38818673
PMC: 11414523.
DOI: 10.1002/mrm.30145.
Zulkarnain N, Sadeghi-Tarakameh A, Thotland J, Harel N, Eryaman Y
Med Phys. 2023; 51(2):1007-1018.
PMID: 38153187
PMC: 10922480.
DOI: 10.1002/mp.16913.
Jiang F, Henry K, Bhusal B, Sanpitak P, Webster G, Popescu A
Diagnostics (Basel). 2023; 13(17).
PMID: 37685385
PMC: 10486594.
DOI: 10.3390/diagnostics13172847.
Jiang F, Bhusal B, Nguyen B, Monge M, Webster G, Kim D
Magn Reson Med. 2023; 90(6):2510-2523.
PMID: 37526134
PMC: 10863853.
DOI: 10.1002/mrm.29776.
RF-induced heating of interventional devices at 23.66 MHz.
Ozen A, Russe M, Lottner T, Reiss S, Littin S, Zaitsev M
MAGMA. 2023; 36(3):439-449.
PMID: 37195365
PMC: 10386938.
DOI: 10.1007/s10334-023-01099-7.
Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
Kazemivalipour E, Sadeghi-Tarakameh A, Keil B, Eryaman Y, Atalar E, Golestanirad L
PLoS One. 2023; 18(1):e0280655.
PMID: 36701285
PMC: 9879463.
DOI: 10.1371/journal.pone.0280655.
A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
Vu J, Bhusal B, Nguyen B, Sanpitak P, Nowac E, Pilitsis J
PLoS One. 2022; 17(12):e0278187.
PMID: 36490249
PMC: 9733854.
DOI: 10.1371/journal.pone.0278187.
MRI-guided endovascular intervention: current methods and future potential.
Kilbride B, Narsinh K, Jordan C, Mueller K, Moore T, Martin A
Expert Rev Med Devices. 2022; 19(10):763-778.
PMID: 36373162
PMC: 9869980.
DOI: 10.1080/17434440.2022.2141110.
Segmenting electroencephalography wires reduces radiofrequency shielding artifacts in simultaneous electroencephalography and functional magnetic resonance imaging at 7 T.
Le T, Gruetter R, Jorge J, Ipek O
Magn Reson Med. 2022; 88(3):1450-1464.
PMID: 35575944
PMC: 9323442.
DOI: 10.1002/mrm.29298.
Safety of MRI in patients with retained cardiac leads.
Nguyen B, Bhusal B, Rahsepar A, Fawcett K, Lin S, Marks D
Magn Reson Med. 2021; 87(5):2464-2480.
PMID: 34958685
PMC: 8919805.
DOI: 10.1002/mrm.29116.
Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems.
Kazemivalipour E, Bhusal B, Vu J, Lin S, Nguyen B, Kirsch J
Magn Reson Med. 2021; 86(3):1560-1572.
PMID: 33961301
PMC: 8713475.
DOI: 10.1002/mrm.28818.
RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
Kazemivalipour E, Vu J, Lin S, Bhusal B, Nguyen B, Kirsch J
Annu Int Conf IEEE Eng Med Biol Soc. 2020; 2020:6143-6146.
PMID: 33019373
PMC: 10882580.
DOI: 10.1109/EMBC44109.2020.9175737.
RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations.
Golestanirad L, Kazemivalipour E, Lampman D, Habara H, Atalar E, Rosenow J
Magn Reson Med. 2019; 83(6):2284-2292.
PMID: 31677308
PMC: 7047541.
DOI: 10.1002/mrm.28049.
Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of Current (CBLOC).
Golestanirad L, Angelone L, Kirsch J, Downs S, Keil B, Bonmassar G
IEEE Trans Microw Theory Tech. 2019; 67(3):1265-1273.
PMID: 31607756
PMC: 6788634.
DOI: 10.1109/TMTT.2018.2885517.
Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T.
Golestanirad L, Kazemivalipour E, Keil B, Downs S, Kirsch J, Elahi B
PLoS One. 2019; 14(8):e0220043.
PMID: 31390346
PMC: 6685612.
DOI: 10.1371/journal.pone.0220043.
Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories.
Kazemivalipour E, Keil B, Vali A, Rajan S, Elahi B, Atalar E
Neuroimage. 2019; 199:18-29.
PMID: 31096058
PMC: 7266624.
DOI: 10.1016/j.neuroimage.2019.05.015.
A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and preserved mechanical performance.
Yildirim K, Basar B, Campbell-Washburn A, Herzka D, Kocaturk O, Lederman R
J Cardiovasc Magn Reson. 2019; 21(1):16.
PMID: 30841903
PMC: 6404324.
DOI: 10.1186/s12968-019-0526-7.
Finite difference transmission line model for the design of safe multi-section cables in MRI.
Missoffe A, Barbier T, Felblinger J
MAGMA. 2019; 32(4):449-459.
PMID: 30783887
DOI: 10.1007/s10334-019-00744-4.
RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
Golestanirad L, Kirsch J, Bonmassar G, Downs S, Elahi B, Martin A
Neuroimage. 2018; 184:566-576.
PMID: 30243973
PMC: 6475594.
DOI: 10.1016/j.neuroimage.2018.09.034.