» Articles » PMID: 12428735

Effect of High Dietary Manganese Intake of Neonatal Rats on Tissue Mineral Accumulation, Striatal Dopamine Levels, and Neurodevelopmental Status

Overview
Journal Neurotoxicology
Date 2002 Nov 14
PMID 12428735
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Mn is an essential element, but may become neurotoxic at high levels. Recent reports of high Mn levels in hair of children with neurodevelopmental deficits suggest that these deficits could be due to Mn-induced neurotoxic effects on brain dopamine (DA) systems, although the mechanism is not well understood. Infant formulas contain considerably higher concentrations of Mn than human milk. Thus, formula-fed infants are exposed to high levels of Mn at a time when Mn homeostasis is incompletely developed. We studied the effects of dietary Mn supplementation of rat pups on tissue Mn accumulation, brain dopamine levels, infant neurodevelopmental status, and behavior at maturity. Newborn rats were supplemented daily with 0, 50, 250, or 500 microg Mn given orally from day 1 to day 20. Mineral analysis of small intestine and brain at day 14 showed a significant increase of tissue Mn in supplemented rats. Neurodevelopmental tests conducted at various ages showed significant delays as a function of Mn supplementation. At day 32, there was a significant positive relationship between passive avoidance errors and Mn supplementation levels. Brains of animals killed on day 40 showed a significant inverse relationship between Mn supplementation level and striatal dopamine concentration. These observations suggest that dietary exposure to high levels of Mn during infancy can be neurotoxic to rat pups and result in developmental deficits.

Citing Articles

Manganese: From Soil to Human Health-A Comprehensive Overview of Its Biological and Environmental Significance.

Obeng S, Kulhanek M, Balik J, cerny J, Sedlar O Nutrients. 2024; 16(20).

PMID: 39458451 PMC: 11510450. DOI: 10.3390/nu16203455.


PPARs (Peroxisome Proliferator-activated Receptors) and Their Agonists in Alzheimer's Disease.

Kumar M, Sharma A, Datusalia A, Khatik G Med Chem. 2024; 20(8):781-798.

PMID: 38726789 DOI: 10.2174/0115734064295063240422100615.


Scientific opinion on the tolerable upper intake level for manganese.

Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch-Ernst K, Knutsen H EFSA J. 2023; 21(12):e8413.

PMID: 38075631 PMC: 10704406. DOI: 10.2903/j.efsa.2023.8413.


Consequences of Disturbing Manganese Homeostasis.

Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A Int J Mol Sci. 2023; 24(19).

PMID: 37834407 PMC: 10573482. DOI: 10.3390/ijms241914959.


Manganese Intoxication Presenting with Depressive Symptoms: A Case Report.

Sonmez D, Hocaoglu C Noro Psikiyatr Ars. 2023; 60(3):288-291.

PMID: 37645076 PMC: 10461766. DOI: 10.29399/npa.28305.