» Articles » PMID: 12391320

An Approach to Membrane Protein Structure Without Crystals

Overview
Specialty Science
Date 2002 Oct 23
PMID 12391320
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

The lactose permease of Escherichia coli catalyzes coupled translocation of galactosides and H(+) across the cell membrane. It is the best-characterized member of the Major Facilitator Superfamily, a related group of membrane proteins with 12 transmembrane domains that mediate transport of various substrates across cell membranes. Despite decades of effort and their functional importance in all kingdoms of life, no high-resolution structures have been solved for any member of this family. However, extensive biochemical, genetic, and biophysical studies on lactose permease have established its transmembrane topology, secondary structure, and numerous interhelical contacts. Here we demonstrate that this information is sufficient to calculate a structural model at the level of helix packing or better.

Citing Articles

Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor.

Nishihara Y, Kitao A Proc Natl Acad Sci U S A. 2015; 112(25):7737-42.

PMID: 26056313 PMC: 4485142. DOI: 10.1073/pnas.1502991112.


Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ.

Frillingos S Int J Biochem Mol Biol. 2012; 3(3):250-72.

PMID: 23097742 PMC: 3476789.


Proton-coupled dynamics in lactose permease.

Andersson M, Bondar A, Freites J, Tobias D, Kaback H, White S Structure. 2012; 20(11):1893-904.

PMID: 23000385 PMC: 3496080. DOI: 10.1016/j.str.2012.08.021.


Proline-proline-glutamic acid (PPE) protein Rv1168c of Mycobacterium tuberculosis augments transcription from HIV-1 long terminal repeat promoter.

Bhat K, Chaitanya C, Parveen N, Varman R, Ghosh S, Mukhopadhyay S J Biol Chem. 2012; 287(20):16930-46.

PMID: 22427668 PMC: 3351301. DOI: 10.1074/jbc.M111.327825.


Lactose permease and the alternating access mechanism.

Smirnova I, Kasho V, Kaback H Biochemistry. 2011; 50(45):9684-93.

PMID: 21995338 PMC: 3210931. DOI: 10.1021/bi2014294.


References
1.
Wu J, Hardy D, Kaback H . Tilting of helix I and ligand-induced changes in the lactose permease determined by site-directed chemical cross-linking in situ. Biochemistry. 1998; 37(45):15785-90. DOI: 10.1021/bi981501o. View

2.
He M, Voss J, Hubbell W, Kaback H . Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 1. Proximity of helix VII (Asp237 and Asp240) with helices X (Lys319) and XI (Lys358). Biochemistry. 1995; 34(48):15661-6. DOI: 10.1021/bi00048a009. View

3.
Wang Q, Voss J, Hubbell W, Kaback H . Proximity of helices VIII (Ala273) and IX (Met299) in the lactose permease of Escherichia coli. Biochemistry. 1998; 37(14):4910-5. DOI: 10.1021/bi972990f. View

4.
Stein E, Rice L, Brunger A . Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson. 1997; 124(1):154-64. DOI: 10.1006/jmre.1996.1027. View

5.
Sahin-Toth M, Lawrence M, Nishio T, Kaback H . The C-4 hydroxyl group of galactopyranosides is the major determinant for ligand recognition by the lactose permease of Escherichia coli. Biochemistry. 2001; 40(43):13015-9. DOI: 10.1021/bi011233l. View