» Articles » PMID: 16372357

Multipass Membrane Protein Structure Prediction Using Rosetta

Overview
Journal Proteins
Date 2005 Dec 24
PMID 16372357
Citations 185
Authors
Affiliations
Soon will be listed here.
Abstract

We describe the adaptation of the Rosetta de novo structure prediction method for prediction of helical transmembrane protein structures. The membrane environment is modeled by embedding the protein chain into a model membrane represented by parallel planes defining hydrophobic, interface, and polar membrane layers for each energy evaluation. The optimal embedding is determined by maximizing the exposure of surface hydrophobic residues within the membrane and minimizing hydrophobic exposure outside of the membrane. Protein conformations are built up using the Rosetta fragment assembly method and evaluated using a new membrane-specific version of the Rosetta low-resolution energy function in which residue-residue and residue-environment interactions are functions of the membrane layer in addition to amino acid identity, distance, and density. We find that lower energy and more native-like structures are achieved by sequential addition of helices to a growing chain, which may mimic some aspects of helical protein biogenesis after translocation, rather than folding the whole chain simultaneously as in the Rosetta soluble protein prediction method. In tests on 12 membrane proteins for which the structure is known, between 51 and 145 residues were predicted with root-mean-square deviation <4 A from the native structure.

Citing Articles

Atomistic mechanisms of the regulation of small-conductance Ca-activated K channel (SK2) by PIP2.

Woltz R, Zheng Y, Choi W, Ngo K, Trinh P, Ren L Proc Natl Acad Sci U S A. 2024; 121(39):e2318900121.

PMID: 39288178 PMC: 11441529. DOI: 10.1073/pnas.2318900121.


Proteostasis Landscapes of Cystic Fibrosis Variants Reveals Drug Response Vulnerability.

McDonald E, Kim M, Olson J, Olson 3rd J, Meiler J, Plate L bioRxiv. 2024; .

PMID: 39026768 PMC: 11257600. DOI: 10.1101/2024.07.10.602964.


A multiscale predictive digital twin for neurocardiac modulation.

Yang P, Rose A, DeMarco K, Dawson J, Han Y, Jeng M J Physiol. 2023; 601(17):3789-3812.

PMID: 37528537 PMC: 10528740. DOI: 10.1113/JP284391.


General trends in the effects of VX-661 and VX-445 on the plasma membrane expression of clinical CFTR variants.

McKee A, McDonald E, Penn W, Kuntz C, Noguera K, Chamness L Cell Chem Biol. 2023; 30(6):632-642.e5.

PMID: 37253358 PMC: 10330547. DOI: 10.1016/j.chembiol.2023.05.001.


Phosphatidylserine-dependent structure of synaptogyrin remodels the synaptic vesicle membrane.

Yu T, Flores-Solis D, Eastep G, Becker S, Zweckstetter M Nat Struct Mol Biol. 2023; 30(7):926-934.

PMID: 37217654 PMC: 10352133. DOI: 10.1038/s41594-023-01004-9.


References
1.
Bonneau R, Strauss C, Rohl C, Chivian D, Bradley P, Malmstrom L . De novo prediction of three-dimensional structures for major protein families. J Mol Biol. 2002; 322(1):65-78. DOI: 10.1016/s0022-2836(02)00698-8. View

2.
Pilpel Y, Ben-Tal N, Lancet D . kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. J Mol Biol. 1999; 294(4):921-35. DOI: 10.1006/jmbi.1999.3257. View

3.
Arkin I, Brunger A, Engelman D . Are there dominant membrane protein families with a given number of helices?. Proteins. 1997; 28(4):465-6. DOI: 10.1002/(sici)1097-0134(199708)28:4<465::aid-prot1>3.0.co;2-9. View

4.
KROGH A, Larsson B, von Heijne G, Sonnhammer E . Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001; 305(3):567-80. DOI: 10.1006/jmbi.2000.4315. View

5.
Pappu R, Marshall G, Ponder J . A potential smoothing algorithm accurately predicts transmembrane helix packing. Nat Struct Biol. 1999; 6(1):50-5. DOI: 10.1038/4922. View