» Articles » PMID: 12374745

Gcn4 Co-ordinates Morphogenetic and Metabolic Responses to Amino Acid Starvation in Candida Albicans

Overview
Journal EMBO J
Date 2002 Oct 11
PMID 12374745
Citations 104
Authors
Affiliations
Soon will be listed here.
Abstract

Candida albicans is a major fungal pathogen of humans. It regulates its morphology in response to various environmental signals, but many of these signals are poorly defined. We show that amino acid starvation induces filamentous growth in C.albicans. Also, starvation for a single amino acid (histidine) induces CaHIS4, CaHIS7, CaARO4, CaLYS1 and CaLYS2 gene expression in a manner reminiscent of the GCN response in Saccharomyces cerevisiae. These morphogenetic and GCN-like responses are both dependent upon CaGcn4, which is a functional homologue of S.cerevisiae Gcn4. Like ScGcn4, CaGcn4 activates the transcription of amino acid biosynthetic genes via the GCRE element, and CaGcn4 confers resistance to the histidine analogue, 3-aminotriazole. CaGcn4 interacts with the Ras-cAMP pathway to promote filamentous growth, but the GCN-like response is not dependent upon morphogenetic signalling. CaGcn4 acts as a global regulator in C.albicans, co-ordinating both metabolic and morphogenetic responses to amino acid starvation.

Citing Articles

Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in during thermal stress.

Goich D, Bloom A, Duffy S, Ventura M, Panepinto J mBio. 2024; 16(2):e0176224.

PMID: 39670714 PMC: 11796416. DOI: 10.1128/mbio.01762-24.


Research progress on the function and regulatory pathways of amino acid permeases in fungi.

Yang Y, Li Y, Zhu J World J Microbiol Biotechnol. 2024; 40(12):392.

PMID: 39581943 DOI: 10.1007/s11274-024-04199-1.


Transcriptional profiling reveals the role of Candida albicans Rap1 in oxidative stress response.

Wang W, Chen H, Chen S, Lan C Biosci Rep. 2024; 44(12).

PMID: 39575984 PMC: 11667096. DOI: 10.1042/BSR20240689.


Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in during thermal stress.

Goich D, Bloom A, Duffy S, Ventura M, Panepinto J bioRxiv. 2024; .

PMID: 38915642 PMC: 11195226. DOI: 10.1101/2024.06.11.598457.


exhibits heterogeneous and adaptive cytoprotective responses to antifungal compounds.

Dumeaux V, Massahi S, Bettauer V, Mottola A, Dukovny A, Khurdia S Elife. 2023; 12.

PMID: 37888959 PMC: 10699808. DOI: 10.7554/eLife.81406.


References
1.
Fonzi W, Irwin M . Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993; 134(3):717-28. PMC: 1205510. DOI: 10.1093/genetics/134.3.717. View

2.
Feng Q, Summers E, Guo B, Fink G . Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol. 1999; 181(20):6339-46. PMC: 103768. DOI: 10.1128/JB.181.20.6339-6346.1999. View

3.
Brown Jr D, Giusani A, Chen X, Kumamoto C . Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol. 1999; 34(4):651-62. DOI: 10.1046/j.1365-2958.1999.01619.x. View

4.
Care R, Trevethick J, Binley K, Sudbery P . The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol. 1999; 34(4):792-8. DOI: 10.1046/j.1365-2958.1999.01641.x. View

5.
Ramon A, Porta A, Fonzi W . Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol. 1999; 181(24):7524-30. PMC: 94210. DOI: 10.1128/JB.181.24.7524-7530.1999. View